Single Gene Disorders in Congenital Heart Disease

John Lynn Jefferies, MD, MPH, FAAP, FACC
Director, Cardiomyopathy, Heart Failure, and Cardiac Transplantation
Co-Director, Cardiovascular Genetics
Associate Director, Heart Institute Research Core
Associate Professor, Pediatric Cardiology
The Heart Institute
Cincinnati Children’s Hospital
Associate Professor, Adult Cardiovascular Diseases
University of Cincinnati

The Speaker has no disclosures
Single Gene Disorders in Congenital Heart Disease

- Significant effort devoted to identifying the genetic contributions to cardiovascular disease
 - Cardiomyopathy
 - Arrhythmias
 - Vasculopathy
 - Cardiovascular malformations
Single Gene Disorders in Congenital Heart Disease

- Congenital heart disease (CHD) remains the most common birth defect worldwide
- Accounts for 25-30% of all birth defects
- Birth prevalence 6-8/1000 live births
 - ~40,000 children born with CHD in the US each year
 - Additional 40,000 are born with subclinical disease
- Numbers increasing as improvements in diagnostic techniques allow for detection of milder forms of disease
Single Gene Disorders in Congenital Heart Disease

- With improvements in medical and surgical management, the majority of these patients survive into adulthood
 - Currently >1 million adults with CHD

- Significant impact on health care system
 - Reach reproductive age

- Understanding of genetics critical to these patients and their families
Genetic Basis of Congenital Heart Disease

- Chromosomal
 - Submicroscopic chromosomal aberrations
- Mendelian
 - Autosomal dominant (AD)
 - Autosomal recessive (AR)
 - X-linked
- Epigenetic-imprinting
- Multifactorial or Complex
Single Gene Disorders in Congenital Heart Disease

- Single gene disorders have been increasingly described in association with CHD

- Syndromic
 - Holt-Oram syndrome (TBX5)

- Nonsyndromic
 - NKX2.5
Embryological Mechanisms

<table>
<thead>
<tr>
<th>Normal</th>
<th>Pathological</th>
</tr>
</thead>
<tbody>
<tr>
<td>• establishment of cardiogenic field</td>
<td>• laterality and looping - heterotaxy</td>
</tr>
<tr>
<td>• formation of the heart tube</td>
<td>• mesenchymal cell (neural crest) migration - TOF, TGA</td>
</tr>
<tr>
<td>• chamber specification</td>
<td>• extracellular matrix - AV canal</td>
</tr>
<tr>
<td>• rightward looping</td>
<td>• targeted growth - TAPVR</td>
</tr>
<tr>
<td>• chamber formation and valve development</td>
<td>• apoptosis - muscular VSD</td>
</tr>
<tr>
<td>• neural crest contribution to outflow tract</td>
<td>• hemodynamic (flow) defects - LVOT, RVOT, PDA</td>
</tr>
</tbody>
</table>
Holt-Oram Syndrome

- ASD, VSD - 66%
- 17% with complex lesion e.g. HLHS
- Thumb anomaly, (absence in 19/44, hypoplasia in 17/44, triphalangeal thumbs in 8/44) absence of radius (10/44).
- AD 12q21.3-q22, mutations in the \textbf{TBX5} gene (601620) - transcription factor
Expression of Murine Tbx5 in the embryonic heart and limbs
TBX5

- Transcriptional activator of chamber-specific genes
 - cardiac specification
 - chamber morphogenesis
 - differentiation

Human atrial septal defects
Heart Defects Associated with Tbx5 mutations
Noonan, Cardio-Facio-Cutaneous, and Costello Syndromes

- Neuro-cardio-facio-cutaneous (NCFC) syndromes
 - Noonan syndrome
 - Costello syndrome
 - Cardio-facio-cutaneous (CFC) syndrome
 - LEOPARD syndrome
Noonan, Cardio-Facio-Cutaneous, and Costello Syndromes

- NCFC syndromes result from DNA mutations that result in alteration of complex protein signaling pathways
 - RAS/RAF/MEK
 - Controls cell growth

- There is a significant amount of clinical overlap between these disorders
- However, each is characterized by mutations in specific genes
Noonan, Cardio-Facio-Cutaneous, and Costello Syndromes

- Most Noonan syndrome patients have mutations in PTPN11 (~50%)
 - Mutations in SOS1, K-RAS, and RAF1 account for ~25%

- Most Costello syndrome patients have mutations in H-RAS

- Most patients with CFC syndrome have mutations in B-RAF
 - Also may involve MEK1 and MEK2
Noonan, Cardio-Facio-Cutaneous, and Costello Syndromes

- The RAS/RAF/MEK signaling pathway plays important roles in different cellular mechanisms
 - Metabolism, differentiation, cell death
- The malfunction of this pathway during embryologic development may result in multiple clinical abnormalities
 - Developmental delay
 - Mental retardation
 - Musculoskeletal disease
 - Cardiomyopathies (Heart muscle disease)
Noonan Syndrome

- Possible parent to child inheritance
 - But many cases are new mutations with no prior family history
- Occurs in every 1:1000 to 1:2500 live births
- Findings may include wide set eyes, low-set ears, breast bone abnormalities, neck webbing, bleeding abnormalities, short stature
- Mild intellectual deficits may also occur
Noonan Syndrome

- Cardiac disease is well described and occurs in ~50% to 80% of people
- Pulmonic stenosis is the most common finding (20% to 50% cases)
- Hypertrophic cardiomyopathy (HCM) may occur in 20% to 30%
- Vascular involvement may also occur
 - Pulmonary arteries
 - Aorta

Noonan Syndrome
Pulmonic Stenosis

Normal

Pulmonary stenosis

Pulmonary Valve
Aortic Valve
Pulmonary Artery
Noonan Syndrome
Aortic Dilation
Noonan Syndrome
Hypertrophic Cardiomyopathy
Cardio-Facio-Cutaneous Syndrome

- CFC is characterized by mental retardation, characteristic facies, ectodermal abnormalities, and cardiac disease.
- Recent review of 38 patients with proven mutations known to cause CFC.
 - 71% found to have cardiac disease.

Cardio-Facio-Cutaneous Syndrome

Table 1 Frequency of some cardinal features among the 38 individuals

<table>
<thead>
<tr>
<th>Feature</th>
<th>BRAF (32)</th>
<th>MEK1 (4)</th>
<th>MEK2 (2)</th>
<th>Respondents (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulmonary valve stenosis</td>
<td>11/27</td>
<td>3/4</td>
<td>0/2</td>
<td>42</td>
</tr>
<tr>
<td>ASD</td>
<td>9/27</td>
<td>0/3</td>
<td>0/2</td>
<td>28</td>
</tr>
<tr>
<td>VSD</td>
<td>7/27</td>
<td>0/3</td>
<td>0/2</td>
<td>22</td>
</tr>
<tr>
<td>Hypertrophic cardiomyopathy</td>
<td>11/28</td>
<td>1/3</td>
<td>1/2</td>
<td>39</td>
</tr>
<tr>
<td>Hair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curly hair</td>
<td>29/32</td>
<td>3/4</td>
<td>2/2</td>
<td>92</td>
</tr>
<tr>
<td>Absent or sparse eyebrows</td>
<td>24/29</td>
<td>4/4</td>
<td>2/2</td>
<td>86</td>
</tr>
<tr>
<td>Sparse hair</td>
<td>27/32</td>
<td>3/4</td>
<td>2/2</td>
<td>84</td>
</tr>
<tr>
<td>Skin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nevi</td>
<td>23/31</td>
<td>3/4</td>
<td>2/2</td>
<td>76</td>
</tr>
<tr>
<td>Keratosis pilaris</td>
<td>16/22</td>
<td>1/2</td>
<td>2/2</td>
<td>73</td>
</tr>
<tr>
<td>Hyperkeratosis</td>
<td>13/23</td>
<td>2/3</td>
<td>2/2</td>
<td>61</td>
</tr>
<tr>
<td>Haemangiomas</td>
<td>11/27</td>
<td>3/3</td>
<td>1/2</td>
<td>47</td>
</tr>
<tr>
<td>Red itchy skin</td>
<td>11/28</td>
<td>3/4</td>
<td>1/2</td>
<td>44</td>
</tr>
<tr>
<td>Ichthyosis</td>
<td>7/23</td>
<td>1/2</td>
<td>0/2</td>
<td>30</td>
</tr>
<tr>
<td>Café-au-lait macules</td>
<td>7/27</td>
<td>0/4</td>
<td>2/2</td>
<td>27</td>
</tr>
<tr>
<td>Dermatitis</td>
<td>5/21</td>
<td>2/3</td>
<td>0/2</td>
<td>27</td>
</tr>
<tr>
<td>Cutaneous lymphangioma</td>
<td>2/29</td>
<td>0/3</td>
<td>0/2</td>
<td>6</td>
</tr>
</tbody>
</table>
Costello Syndrome

- Complex developmental disorder
 - Characteristic craniofacial features
 - Neurocognitive delay
 - Failure to thrive
 - Endocrine and skeletal disease
 - Predisposition to neoplasias
 - Cardiac disease
Costello Syndrome

- Many different types of heart disease seen
 - Malformations
 - Tachyarrhythmias
 - Cardiac hypertrophy
 - May be isolated to the left ventricle (LV), both ventricles, or may result in a dilated cardiomyopathy
Costello Syndrome

TABLE II. Cardiovascular Malformations in 28 Patients With Costello Syndrome

<table>
<thead>
<tr>
<th>Manifestation</th>
<th>New patients</th>
<th>Literature</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total patients</td>
<td>27</td>
<td>67</td>
<td>94</td>
</tr>
<tr>
<td>Cardiovascular malformation, total*</td>
<td>4 (14%)</td>
<td>24 (36%)</td>
<td>28 (30% all patients)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(50% any abn)</td>
</tr>
<tr>
<td>Right-sided obstruction</td>
<td>3</td>
<td>10</td>
<td>13 (46%)</td>
</tr>
<tr>
<td>Pulmonic stenosis, valvar or NOS</td>
<td>1</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Pulmonic stenosis, ASD</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Pulmonary artery stenoses</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Right and left sided obstruction</td>
<td>0</td>
<td>1</td>
<td>1 (4%)</td>
</tr>
<tr>
<td>Pulmonic stenosis, BAV, AS, MS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left-sided obstruction</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Septal defect</td>
<td>0</td>
<td>9</td>
<td>9 (32%)</td>
</tr>
<tr>
<td>Atrial septal defect</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Ventricular septal defect</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Not specified</td>
<td>1</td>
<td>4</td>
<td>5 (18%)</td>
</tr>
<tr>
<td>Conotruncal</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Atrioventricular canal</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Single ventricle</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Heterotaxy</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

AS, aortic stenosis; BAV, bicuspid aortic valve; CVM, cardiovascular malformation; MS, mitral stenosis; NOS, not otherwise specified.

*Additional mitral valve abnormalities: prolapse, myxomatous or redundant [new patients 3 and 23; Martin and Jones, 1991], thick mitral and/or aortic valve tips [new patient 4; Suri and Carrott, 1998, patient 1; Izumikawa et al., 1993, patient 1]; regurgitation without mitral valve abnormality [new patient 22], unspecified murmur [Torrello et al., 1995].
Costello Syndrome

<table>
<thead>
<tr>
<th>Manifestation</th>
<th>New patients</th>
<th>Literature</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total patients</td>
<td>27</td>
<td>67</td>
<td>94</td>
</tr>
<tr>
<td>Cardiac hypertrophy<sup>a</sup></td>
<td>6 (22%)</td>
<td>26 (39%)</td>
<td>32 (34% all pts)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(54% any abs)</td>
</tr>
<tr>
<td>Left ventricle</td>
<td>5</td>
<td>11</td>
<td>16 (50%)</td>
</tr>
<tr>
<td>Definite HCM<sup>b</sup></td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Possible HCM</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Probably not HCM, concentric</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>LVH +/− subAS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVH NOS</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Biventricular hypertrophy, LV > RV</td>
<td>1</td>
<td>3</td>
<td>4 (12%)</td>
</tr>
<tr>
<td>Definite HCM</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Possible HCM</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Definitely not HCM</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Not specified, unclear</td>
<td>0</td>
<td>12</td>
<td>12 (38%)</td>
</tr>
</tbody>
</table>

TABLE IV. Rhythm Disturbances in 31 Patients With Costello Syndrome

<table>
<thead>
<tr>
<th>Manifestation</th>
<th>New patients</th>
<th>Literature</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total patients</td>
<td>27</td>
<td>67</td>
<td>94</td>
</tr>
<tr>
<td>Rhythm disturbance</td>
<td>8 (30%)</td>
<td>23 (34%)</td>
<td>31 (33% all pts) (56% any abn)</td>
</tr>
<tr>
<td>Atrial, primary tachycardia</td>
<td>5 (62%)</td>
<td>18 (78%)</td>
<td>23 (74%)</td>
</tr>
<tr>
<td>SVT, +/- PACs</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>MAT, +/- PACs</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>“Multifocal SVT”, PACs, PVCs</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Chaotic atrial rhythm</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Atrial, NOS</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tachycardia NOS, probably atrial</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Fibrillation, flutter</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Fibrillation, “conduction defects”</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Premature atrial contractions</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Premature nodal contractions</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ventricular, total</td>
<td>2</td>
<td>2</td>
<td>4 (13%)</td>
</tr>
<tr>
<td>Premature ventricular contractions</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Neonatal VT and multifocal PVCs, persistent atrial fibrillation</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Complete heart block, “VT”</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Not otherwise specified</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

MAT, multifocal tachycardia; NOS, not otherwise specified; PAC, premature atrial contraction; PVC, premature ventricular contraction; SVT, supraventricular tachycardia; VT, ventricular fibrillation.
Genetics of Syndromic Associated Cardiovascular Disease

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Cardiac anomalies</th>
<th>Causative gene(s)</th>
<th>Gene MIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Disease genes for syndromic cardiovascular malformations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alagille syndrome</td>
<td>PS, TOF, ASD, peripheral pulmonary stenosis</td>
<td>JAG1, NOTCH2</td>
<td>601920, 600275</td>
</tr>
<tr>
<td>Char syndrome</td>
<td>PDA</td>
<td>TFAP2B</td>
<td>601601</td>
</tr>
<tr>
<td>CHARGE syndrome</td>
<td>ASD, VSD, valve defects</td>
<td>CHD7, SEMA3E</td>
<td>608892, 608116</td>
</tr>
<tr>
<td>Costello syndrome</td>
<td>PS, HCM, cardiac conduction abnormalities</td>
<td>HRAS</td>
<td>190020</td>
</tr>
<tr>
<td>Ellis van Creveld</td>
<td>ASD</td>
<td>EVC, EVC2</td>
<td>604831, 607261</td>
</tr>
<tr>
<td>Heterotaxy syndrome</td>
<td>DILV, DORV, d-TGA, AVSD</td>
<td>ZIC3, CFC1</td>
<td>300265, 605194</td>
</tr>
<tr>
<td>Holt-Oram syndrome</td>
<td>ASD, VSD, AVSD, progressive AV conduction system disease</td>
<td>TBX5</td>
<td>601620</td>
</tr>
<tr>
<td>LEOPARD syndrome</td>
<td>PS and cardiac conduction abnormalities</td>
<td>PTPN11, RAF1</td>
<td>176876, 164760</td>
</tr>
<tr>
<td>Noonan syndrome</td>
<td>PS with dysplastic pulmonary valve, AVSD, HCM, CoA</td>
<td>PTPN11, KRAS, RAF1, SOS1</td>
<td>176876, 190070, 164760, 182530</td>
</tr>
<tr>
<td>Rubinstein Taybi</td>
<td>ASD, VSD</td>
<td>CREBBP, EP300</td>
<td>600140, 602700</td>
</tr>
<tr>
<td>Smith Lemli Opitz</td>
<td>VSD, ASD, AVSD</td>
<td>DHCR7</td>
<td>602858</td>
</tr>
</tbody>
</table>
Velocardofoacial Syndrome (VCFS)

- Learning disability (66%),
- Cleft palate or pharyngeal hypotonia (49%)
- Cardiac anomalies (74%) - TOF, Interrupted Aortic Arch Type B, etc
- Genitourinary abnormalities
- 22q11 deletion, 5-10% inherited
- DiGeorge Syndrome - hypocalcemia, thymic aplasia

Single Gene Disorders in Nonsyndromic Cardiovascular Disease

- The etiology of most nonsyndromic disease is unknown
- Last decade has seen an increase in identified genes
 - NKX2.5
 - GATA4
 - T box genes
 - NOTCH1
Morphologic Development of the Heart
Cardiac Lineages

- Second lineage progenitors lie medial and caudal to the first lineage progenitors of the crescent
 - PAM – pharyngeal arch mesoderm
 - DPM – dorsal pericardial mesoderm

First lineage: Cardiac crescent

Second lineage:
Contribution of Neural Crest
Contributions of the Cardiac Neural Crest
NKX2.5

- NK-homeobox transcription factor
- Plays a key role in cardiac chamber development
- Also important for conduction system morphogenesis
- Importance to myocardial function as well
- Associated with multiple structural lesions
NKX2.5

GATA4

- GATA4 is an essential transcription factor for cardiac morphogenesis
- Required for normal myocardial growth and right ventricular development
- Important for normal endocardial cushion derived tissue development (atrioventricular valves)
GATA4

Patient characteristics

<table>
<thead>
<tr>
<th>Cardiac lesion</th>
<th>Patients, # (%)</th>
<th>GATA4 alteration, # (%)</th>
<th>Proband with family history</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endocardial cushion defects</td>
<td>42 (39)</td>
<td>2 (4.8)</td>
<td>0</td>
</tr>
<tr>
<td>Double inlet LV</td>
<td>9 (8)</td>
<td>1 (11.1)</td>
<td>0</td>
</tr>
<tr>
<td>ASD/VSD</td>
<td>8 (7)</td>
<td>1 (12.5)</td>
<td>1</td>
</tr>
<tr>
<td>Cardiomyopathy</td>
<td>48 (45)</td>
<td>0 (0)</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>107</td>
<td>4 (3.7)</td>
<td></td>
</tr>
</tbody>
</table>

a GATA4 alteration is defined as a non-synonymous sequence alteration not found in control individuals.

b 24 of these patients were via personal communications from M. Sarkar, C. Seidman, and J. Seidman.
T Box Transcription Factors

- DNA consensus sequence TCACACCT
- T-box is a 180 amino acid DNA-binding domain, generally comprising about a third of the entire protein (17-26 kDa)
- Similarity to the DNA binding domain of Mus musculus (Mouse) Brachyury (T)
- Conserved from Drosophila Dorsocross complex
- 7 T-box transcription factors expressed in cardiac development – Tbx1,2,3,4,5,18,20
Genotype-Phenotype Correlations

<table>
<thead>
<tr>
<th>Gene</th>
<th>Chromosomal location</th>
<th>Cardiac defect</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALK2</td>
<td>2q23-q24</td>
<td>Primum type ASD, MVP</td>
<td>Joziasse [52]</td>
</tr>
<tr>
<td>BMPR2</td>
<td>2q33</td>
<td>AVSD, ASD, PDA, PAPVR + PAH</td>
<td>Roberts [90]</td>
</tr>
<tr>
<td>CFC1/Cryptic</td>
<td>2q21.1</td>
<td>Heterotaxia, TGA, DORV, common AV canal, AA hypoplasia, pulmonary artresia, DIRV</td>
<td>Bamford [7, 41]</td>
</tr>
<tr>
<td>Cited2</td>
<td>6q23.3</td>
<td>TOF, VSD, ASD, anomalous pulmonary venous return, RVOT obstruction</td>
<td>Sperling [102]</td>
</tr>
<tr>
<td>CRELD1</td>
<td>22p13</td>
<td>AVSD, cleft mitral valve, ASD type I, heterotaxy</td>
<td>Sheffield [98]</td>
</tr>
<tr>
<td>Elastin</td>
<td>7q11.2</td>
<td>Supravalvular AoS</td>
<td>Robinson [91]</td>
</tr>
<tr>
<td>FOG2</td>
<td>8q23</td>
<td>TOF</td>
<td>Metcalfe [66]</td>
</tr>
<tr>
<td>GATA 4</td>
<td>8p23.1-p22</td>
<td>ASD, AVSD, pulmonary valve thickening, insufficiency of cardiac valves</td>
<td>Pizzuti [82]</td>
</tr>
<tr>
<td>JAG1</td>
<td>20p12</td>
<td>TOF, VSD with aortic dextroposition, PPS</td>
<td>Okubo [78]</td>
</tr>
<tr>
<td>KRAS</td>
<td>12p12.1</td>
<td>ASD, VSD, valvular PS, HCM, HOCM, MVP, IVP, LYH</td>
<td>Garg [35]</td>
</tr>
<tr>
<td>MYH6</td>
<td>14q12</td>
<td>Secundum ASD</td>
<td>Eldadah [29]</td>
</tr>
<tr>
<td>NKx2.5</td>
<td>5q34</td>
<td>ASD, VSD, TOF, AoS, VH Pulmonary atresia, Mitral valve anomalies, conduction disturbances</td>
<td>Schubbert [96]</td>
</tr>
<tr>
<td>NKx2.6</td>
<td>8p21</td>
<td>IA</td>
<td>Schott [95]</td>
</tr>
<tr>
<td>NOTCH1</td>
<td>9q34.3</td>
<td>Bicuspid aortic valve, mitral valve stenosis, TOF, VSD</td>
<td>König [57]</td>
</tr>
<tr>
<td>PROSIT240</td>
<td>12q24</td>
<td>TGA</td>
<td>Heathcote [43]</td>
</tr>
<tr>
<td>IBX1</td>
<td>22q11.2</td>
<td>Interrupted aortic arch, IA, other aortic arch anomalies</td>
<td>Garg [36]</td>
</tr>
<tr>
<td>TRX5</td>
<td>17q24.1</td>
<td>ASD, AVSD</td>
<td>Mohamed [70]</td>
</tr>
<tr>
<td>Zic3</td>
<td>Xq26.2</td>
<td>TGA, DORV, ASD, AVSD</td>
<td>Müncke [76]</td>
</tr>
</tbody>
</table>

Transcription Factor Gene Families

- Homeobox (NKX2.5, HOXA13)
- Paired-Box (PAX2, PAX6)
- Forkhead (FOXC2)
- T-Box (TBX1,3,5, 20)
- Zinc-finger (GLI3, ZIC2, ZIC3)
- GATA (GATA4)
Tbx1 gene

b. wild-type E10.5

c. Absence of the left fourth PAA in a *Tbx1*+/− embryo at E10.5

d. PAA morphology in a *Tbx1*−/− embryo

e. Compound heterozygous *Df(16)1/Tbx1tm1Bld* embryo

PAA, pharyngeal arch artery; AS, aortic sac; DA, dorsal aorta; IC, internal carotid artery.
Asymmetric Disposition of Visceral Organs in Humans

- **Situs Solitus**: normal disposition of organs
- **Right Isomerism (Asplenia Syndrome)**
- **Left Isomerism (Polysplenia Syndrome)**
- **Situs Inversus**: complete mirror-image reversal of organ asymmetry
- **Heterotaxy**: one or more of the individual organ systems with reversed L/R polarity
Heterotaxy Summary

- ZIC3 mutations in X-linked heterotaxy; also seen in 1% isolated CHD
- Sporadic males and an affected female observed
- ZIC3 mutation analysis is available
- Pedigrees show high rate of birth defects – isolated CHD, NTD, clubfoot, GI anomalies
- Other single gene defects have been identified, but collectively likely < 10% of cases, thus many genetic causes remain unidentified
- Association of heterotaxy cases with gestation diabetes, twin pregnancies, cocaine use
Conclusions

- Genetics increasingly recognized as having significant influence on cardiovascular disease
- Improving technologies provide opportunity for novel gene discovery
- Opportunity for better genotype-phenotype correlations
- Increasing utility of genetic testing in clinical practice to deliver more complete care to patients and their families