MYOFIBROBLASTIC MALIGNANCIES – A CONTINUING CONTROVERSY

Cyril Fisher MD DSc
Royal Marsden Hospital, London, UK

THE MYOFIBROBLAST

Myofibroblasts are modified fibroblasts which were first identified in granulation tissue, where they are probably derived from local fibroblasts, and which form the principal component of a number of reactive and benign soft tissue lesions. Under mechanical stress, the fibroblasts acquire cytoplasmic actin-containing microfilaments or stress fibres which express β- and γ-actins and impart contractility to the cell. The stress fibres are continuous at the cell surface with the fibronexus adhesion complex. With continuing mechanical tension, these ‘proto-myofibroblasts’, under the influence of transforming growth factor β1 and cellular fibronectin, become terminally differentiated myofibroblasts. These cells have better-developed fibronexus and cytoplasmic stress fibres (expressing αSMA, and sometimes desmin and smooth muscle myosin), enabling more effective contractility. In wound healing, as epithelialization is completed, the myofibroblasts are presumed to disappear by apoptosis. In other situations myofibroblasts or myofibroblast-like cells might be derived from (vascular) smooth muscle cells or from pericytes, which seem to be related to smooth muscle cells, or by metaplasia from epithelial cells as seen in spindled carcinomas.

Morphology Myofibroblasts are stellate or bipolar cells, with nuclei which are elongated and tapered or wavy like those of fibroblasts, or shorter, ovoid, and pale staining, with distinct, small central nucleoli. Cell boundaries are indistinct, and the cytoplasm is sparse, lightly eosinophilic, or amphophilic. There is sometimes a paranuclear pale zone representing the Golgi complex. Ultrastructurally, the nuclei are indented, and the cytoplasm has abundant rough endoplasmic reticulum and peripheral bundles of thin cytoplasmic filaments (stress fibres) with dense areas. Other features include Golgi complex, collagen secretion granules in Golgi-derived vesicles, and a specific cell-stromal attachment, the fibronexus. This is a transmembrane complex of intracellular microfilaments in continuity with extracellular, longitudinally disposed fibronectin fibrils. It is absent in smooth muscle.

Smooth muscle cells differ from myofibroblasts additionally by the presence throughout the cytoplasm of myofilament bundles with focal dense bodies, and by their surface features which include pinocytosis-like vesicles or caveolae, cell membrane thickenings and interrupted or continuous external lamina. These features are variably developed in leiomyosarcomas, in which the lesional cells can resemble myofibroblasts. In the latter, however, the cytoplasmic filaments form a peripheral band, there is more rough endoplasmic reticulum and the surface specialisations are absent.

Fibroblasts are spindle shaped cells with tapered nuclei and variable amounts of rough endoplasmic reticulum which can be inactive or active (distended with secretory products), so that the cells can be slender (often with a wavy nucleus) or plump. They lack external lamina, pinocytosis and myofilaments. A number of fibroblastic lesions, however, have a component of myofibroblasts and it is possible that cells can modulate between the two morphological and functional states.
Immunohistochemistry Fibroblasts lack myoid markers and express only vimentin. Myofibroblasts, according to circumstance, display heterogeneous cytoskeletal immunophenotypes and actin isoforms: combinations include vimentin with a-smooth muscle actin, desmin, both or neither, and myosin. Desmin is expressed less frequently in myofibroblastic neoplasms than in smooth muscle tumors. Nonetheless, both types of neoplasms can on occasion have detectable desmin, MSA and SMA. Recently, calponin has been demonstrated as a sensitive (but not specific) marker of myofibroblasts, which are usually negative for h-caldesmon, a marker of smooth muscle differentiation. CD117 is sometimes positive in the cytoplasm of myofibroblasts, depending on technical considerations. However, membranous staining is usually lacking.

Distribution Myofibroblasts occur in the stroma of rare normal tissues (reviewed by Desmouliere and Gabbiani and Eyden et al.), and are a major constituent of inflammatory and reparative granulation tissue. Their functions, appearance and immunoprofile vary in granulation tissue in relation to the phase of activity, and with increasing collagenization of the stroma; the cells appear more fibroblast-like. This variation is reflected in the differing stages of reactive lesions such as nodular fasciitis, and contributes to the range of appearances seen in pathological lesions. In the soft tissues, these include reactive and pseudosarcomatous conditions, and benign and malignant tumors. In the latter, they occur both as neoplastic cells and as a component of the reactive stroma.

PATHOLOGY OF MYOFIBROSARCOMA
Malignant tumors of myofibroblasts are rare lesions which have recently become better defined. The term myofibrosarcoma to indicate a malignant tumor of myofibroblasts was suggested by Ghadially, by analogy with the term fibrosarcoma. Myofibrosarcomas display a range of differentiation, from fasciitis-like to frankly sarcomatous. Low and intermediate grade myofibrosarcomas can be distinguished from pleomorphic myofibrosarcomas, which are malignant fibrous histiocytoma-like tumors. Other low-grade malignant tumors with myofibroblastic differentiation are inflammatory myofibroblastic tumor and congenital fibrosarcoma. These tumors, which have characteristic and consistent genetic abnormalities, are not usually categorized as myofibrosarcomas but are described briefly below.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Malignant tumors with myofibroblastic differentiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myofibroblastic sarcomas</td>
<td></td>
</tr>
<tr>
<td>Low grade</td>
<td>myofibrosarcoma</td>
</tr>
<tr>
<td></td>
<td>inflammatory myofibroblastic tumor</td>
</tr>
<tr>
<td></td>
<td>infantile fibrosarcoma</td>
</tr>
<tr>
<td>Intermediate grade</td>
<td>myofibrosarcoma</td>
</tr>
<tr>
<td>High grade</td>
<td>pleomorphic myofibrosarcoma (MFH)</td>
</tr>
<tr>
<td>Other malignant tumors with myofibroblastic differentiation</td>
<td></td>
</tr>
<tr>
<td>Dermatofibrosarcoma (‘myoid’ areas) (questionable)</td>
<td></td>
</tr>
<tr>
<td>Epithelioid sarcoma</td>
<td></td>
</tr>
<tr>
<td>Spindle cell carcinoma</td>
<td></td>
</tr>
</tbody>
</table>
Low-grade myofibrosarcoma is a distinctive neoplasm, examples of which were formerly classified as other types of sarcoma, or misinterpreted as reactive lesions. It has been described in soft tissues and bone as a fasciitis- or fibrosarcoma-like spindle cell sarcoma which infiltrates locally but rarely metastasizes. The first case is sometimes attributed to Crocker and Murad in 1969, although the myofibroblast was not characterized until 1971. Stillier and Katenkamp observed myofibroblasts in well-differentiated fibrosarcoma in 1975, and Vasudev and Harris reported the first ‘sarcoma of myofibroblasts’ 3 years later.

In the next 20 years only 6 adult and 6 paediatric examples of low or intermediate grade myofibrosarcoma were described. All but two of the reported cases arose in the head and neck region in both soft tissue (postauricular region, face, tonsil, scalp, neck, and thyroid) and bone (mandible, maxilla). Three further examples were included in a study of 200 adult soft tissue sarcomas. In 1998 Mentzel et al described 18 low-grade myofibroblastic sarcomas, of which five had supportive ultrastructural findings (although their Fig 11 in fact shows features of smooth muscle cells). Their tumors occurred in 10 males and 7 females between 19-72 years. Five were located in the oral cavity (including four in the tongue), and seven in extremities. Based on the mitotic index, at least one case was likely to have been of intermediate grade malignancy. Montgomery et al subsequently reported 15 myofibrosarcomas (10 low grade and 5 intermediate grade, using the NCI system), of which 9 were ultrastructurally confirmed. These showed similar clinical features with 11 in men and 4 in women aged 33 to 73 years. 5 lesions involved the head and neck (3 in the oral cavity), and others were located in extremities, trunk and retroperitoneum; three were intraosseous (skull, tibia). Some 10 examples have since been reported in salivary gland, bone (two in each of femur, ilium, and maxilla), and breast, but not all have ultrastructural confirmation.

The age range is 7-85 (mean 40) with a slight male predominance and tumor size ranging between 1.5 and 17 cm. Low-grade myofibrosarcomas can be located superficially in the subcutis or submucosa, but more commonly arise in deeper soft tissue. They are partially circumscribed, but the majority infiltrate irregularly along connective tissue septa or into skeletal muscle. The tumors are composed of mostly bland stellate or spindled cells with tapered or ovoid nuclei with small nucleoli, and scanty or moderate amounts of eosinophilic cytoplasm with variably distinct cell boundaries. These are arranged in fibrosarcoma-like sweeping fascicles, sheets or storiform whorls, with variable collagenous or myxoid stroma and usually scanty inflammation. In places, the patterns mimic those of nodular fasciitis. All cases, however, display focal nuclear atypia. This is usually mild, with scattered enlarged hyperchromatic nuclei, but larger atypical cells are sometimes seen. Mitotic activity is variable but abnormal mitotic figures and necrosis are rare. Occasionally, more cellular areas with polygonal cells are seen, as well as osteoclast-like giant cells. Recurrences tend to be more pleomorphic, but in one example a breast metastasis from a grade 2 myofibrosarcoma was bland and fasciitis-like.

Electron microscopy shows myofibroblasts with variable RER, filaments, and in some cases minimal external lamina, and rarely fibronectin fibrils and fibronexus, as well as collagen secretion granules.

Immunohistochemistry Most low-grade myofibrosarcomas express actin, and about a half express desmin, usually in fewer cells. These antigens can appear together or separately, with either a desmin positive/SMA negative or desmin negative/SMA positive immunophenotype. The SMA staining can at least focally be discerned as a peripheral rim,
beneath the cell membrane. In addition, calponin is diffusely positive in most cases, whereas h-caldesmon is detected with only focal expression in an occasional case36. These findings, which are similar to those in nodular fasciitis, are potentially useful in the distinction from leiomyosarcoma, which usually displays both caldesmon and calponin. Some myofibrosarcomas display fibronectin37. Cytokeratin and EMA and CD3428 are sporadically positive, and S100 protein exceptionally26.

Behavior Clinically, myofibrosarcomas are generally indolent, but can relapse and metastasize even after a long period. Follow-up in 11 patients with low grade tumors revealed local recurrence in 2 cases, and metastases in one. In the series of Montgomery et al, 4 of 9 low grade tumors, and three of four intermediate grade 2 tumors recurred (one twice), and one grade 2 tumor metastasized to lung after 12 months.

Differential diagnosis Myofibrosarcomas resemble benign myofibroblastic lesions, including nodular fasciitis and fibromatosis, as well as other sarcoma subtypes, notably leiomyosarcoma and fibrosarcoma. The diagnosis is usually made on clinical and morphologic grounds; immunohistochemistry is of limited value.

Nodular fasciitis typically appears suddenly and grows rapidly. It does not usually exceed 5 cm in diameter and is most often located in the subcutis. There is a zoning of appearances with myxoid, cellular and fibrous areas, often in different parts of the same lesion, and nuclear atypia and necrosis are absent. Myofibrosarcoma is more cellular and uniform than nodular fasciitis, and infiltrates more widely including into skeletal muscle and bone. Fibromatosis infiltrates skeletal muscle, with muscle fibres showing atrophy rather than separation by tumor as in myofibrosarcoma. There are parallel-aligned, uniform myofibroblasts dispersed in dense collagen with slit-like blood vessels and mast cells, and cytological atypia is absent.

| Table 2. Immunohistochemistry of smooth muscle and fibro/myofibroblastic tumors |
|---------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| Des | SMA | MSA | S100 | EMA | CK | CD34 | Calp | hCald |
| Liomyosarcoma | + | + | + | + | + | ± | + | + |
| Myofibrosarcoma | ± | + | ± | * | - | - | * | - |
| Fibrosarcoma* | - | - | - | - | - | - | - | - |

± = inconsistently reported; * = very occasional positive.
des = desmin SMA = smooth muscle actin, MSA = muscle specific actin (HHF 35)
ema = epithelial membrane antigen; CK = cytokeratin; calp = calponin; hcald = heavy caldesmon

Some myofibrosarcomas closely resemble leiomyosarcoma. The latter, however, typically has alternating fascicles of cells that are less tapered and nuclei that are blunt-ended with scattered paranuclear vacuoles. There is more widespread caldesmon expression. Adult-type fibrosarcoma, on the other hand, has a herringbone fascicular architecture, and cells with scanty cytoplasm and elongated tapered nuclei. There is usually more intercellular collagen than in myofibrosarcoma. In fibrosarcoma, immunohistochemical markers are usually absent (Table 2). The differential diagnosis can include other spindle cell sarcomas such as synovial sarcoma or MPNST as well as some examples of angiosarcoma and spindle
cell rhabdomyosarcoma. These have their specific morphologic accompaniments and immunophenotype. In relevant locations, eg head and neck or breast, spindle cell carcinoma needs to be excluded by use of antibodies to several types of cytokeratin.

Pleomorphic myofibrosarcoma Pleomorphic sarcomas of malignant fibrous histiocytoma (MFH) type are fascicular or storiform neoplasms composed of atypical spindle and polygonal cells, which do not show a specific direction of differentiation. Pleomorphic myofibrosarcoma is a pleomorphic high grade sarcoma in which there is myofibroblastic differentiation, which is usually detected by electron microscopy. Such differentiation has been recognized since the earliest ultrastructural studies of MFH, in which the lesional cells have the appearances of fibroblasts, some of which are plump and histiocyte-like. Some show myofibroblastic features27, 38, 39, including a rare fibronexus40. The proportion of MFH with myofibroblasts depends partly on sample size and the thoroughness of the observer but has been varied between 27% and 100% in quantitative studies41-47. In the largest series so examined, 56% of 32 MFH of all types had detectable myofibroblasts, with a mean of 3% (range 0-22%) of myofibroblasts per case47.

There are, however, few fully documented reports of pleomorphic myofibrosarcoma. Eyden et al described 2 cases in soft tissue in 199126, and some low-or intermediate-grade myofibrosarcomas have recurred as pleomorphic tumors25, 29. Montgomery et al examined a series of 7 cases, compared them with undifferentiated pleomorphic sarcomas, and found the two types of sarcoma to be clinically and morphologically indistinguishable48. A subset has been described in the head neck in children25, but the tumors predominantly involve extremities in adults. Histologically, most pleomorphic myofibrosarcomas are composed of spindle and polygonal cells arranged at least focally in a storiform pattern, with occasional fascicular areas. Large polygonal cells with abundant cytoplasm are seen which mimic rhabdomyoblasts. Fibrosis, myxoid change, necrosis and inflammation are variable.

Immunohistochemistry Actin and desmin have been described in pleomorphic sarcomas in the absence of morphological or ultrastructural evidence of smooth muscle differentiation49, 50, as well as in some with ultrastructurally confirmed myofibroblastic differentiation39. In ultrastructurally defined pleomorphic myofibrosarcomas, SMA and desmin were positive respectively in 57% and 43% of cases48; none of the myofibrosarcomas studied expressed h-caldesmon36, which argues against their being poorly differentiated leiomyosarcomas. In the same study, SMA and desmin were found respectively in 33% and 27% of undifferentiated pleomorphic sarcomas, suggesting that myofibroblastic (and, possibly, smooth muscle) differentiation is more readily detected by immunohistochemistry than electron microscopy.

Behavior Pleomorphic myofibrosarcoma, like other types of pleomorphic sarcoma, is a high-grade malignancy. In the series of Montgomery et al, with a median follow up period of 41 months, 29% of pleomorphic myofibrosarcomas recurred, 71% metastasized, and 43% of patients died of disease48. Among the non-myofibroblastic sarcomas, with a median follow up of 47 months, 35% recurred, 59% metastasized, and 41% of patients died of disease. Thus, pleomorphic myofibrosarcoma is clinically similar to MFH, and myofibroblastic differentiation appears to confer no survival advantage.

Differential Diagnosis Pleomorphic myofibrosarcoma is histologically indistinguishable from MFH. With immunohistochemistry, myofibroblastic differentiation can be inferred from the presence of SMA positivity in large polygonal or pleomorphic spindle cells, especially if the staining is accentuated at the periphery of cell. The differential diagnosis
includes pleomorphic liposarcoma and pleomorphic rhabdomyosarcoma, as well as non-mesenchymal tumors such as melanoma and sarcomatoid carcinoma. The former is defined by the presence of pleomorphic lipoblasts in an otherwise featureless pleomorphic MFH-like sarcoma, and can also have epithelioid areas. The latter has rhabdomyoblastic differentiation, manifested as large round cells with eosinophilic cytoplasm, strap cells with cross-striations, and immunohistochemical reactivity for desmin in cytoplasm and myogenin in nuclei.

OTHER SARCOMAS WITH MYOFIBROBLASTIC DIFFERENTIATION

Inflammatory myofibroblastic tumor (IMT) usually arises within the abdomen (retroperitoneum or mesentery) as a solitary or multicentric mass with a peak incidence in childhood or adolescence\(^51,52\). Similar cases have been termed inflammatory fibrosarcoma\(^53\), but this and IMT are considered to represent a single entity with a spectrum of morphology and behaviour\(^52\). Microscopically, there are fasciitis-like, fascicular and sclerosing areas, with a prominent chronic inflammatory infiltrate including numerous plasma cells. (Figs 10, 11) Pleomorphism is rare although atypical cells can sometimes be seen. Most IMT are positive for smooth muscle actin, and a smaller number for desmin; some cases (especially those in a submesothelial location) are cytokeratin positive. About 30-40% of IMT stain for ALK\(^54-56\), especially abdominal and pulmonary IMT in the first decade. EM shows a mixture of cells with fibroblastic and myofibroblastic features\(^53,57,58\).

Many IMT have clonal abnormalities involving 2p22-24\(^59,60\). Fusion of the anaplastic lymphoma kinase (ALK) gene, located on 2p23, which encodes a tyrosine kinase receptor, with the gene for tropomyosin 3 (TPM3-ALK) or tropomyosin 4 (TPM4-ALK) is seen in some of the tumors\(^61\). A novel transcript involving ALK and CLTC (clathrin heavy chain gene, localized to 17q23) has also been described in 2 cases\(^62\).

About a third of IMT recur locally and a few, for which there are no histological predictive factors, progress to frank sarcoma\(^63-65\). The differential diagnosis includes sclerosing fibro-inflammatory lesions, fibromatosis, low grade myofibrosarcoma, inflammatory leiomyosarcoma and follicular dendritic cell sarcoma.

Infantile fibrosarcoma (IFS) is a further tumor of borderline malignancy that is generally included on accounts of myofibroblastic malignancies but which is a genetically distinct entity. IFS occurs predominantly in the first 4 years of life as a cellular tumor with parallel or herringbone fascicles of fairly uniform darkly staining ovoid spindle cells with mitotic activity but without cytological atypia or pleomorphism. A small subset of tumors contain immature small round cells. Ultrastructurally there tumours are composed of fibroblasts and myofibroblasts and immunohistochemistry shows smooth muscle actin in about a third of cases, and desmin in a quarter. CD34 and S100 protein expression are occasionally seen.

Chromosomal abnormalities described in IFS include trisomy 11, random gains of chromosomes 8, 11, 17 and 20\(^66\), deletion of long arm of 17\(^67\); and a (12;13) translocation\(^68\). A specific translocation (t(12;15)(p13;q25) resulting in fusion of ETV6 and NTRK3 genes has been identified in IFS\(^69-71\). This has also been found in cellular variants of congenital mesoblastic nephroma, a renal tumor resembling IFS\(^72,73\).

Up to 30% of IFS recur, but, unlike in adult fibrosarcoma, metastases are rare, with a frequency of 5% or less in published series. However, local complications of the tumour can be fatal\(^74\).
Myofibroblasts in malignant tumors with epithelial differentiation

Epithelioid sarcoma is a mesenchymal tumor in which the predominant differentiation is epithelial but which also shows morphologic and ultrastructural differentiation towards myofibroblasts75, 76. This occurs mainly towards the edges of the tumor nodules by apparent transition from epithelioid cells, and is associated with expression of smooth muscle and muscle specific actins but not desmin77. Similar differentiation can be seen in sarcomatoid carcinoma9.

THE CONCEPT OF MYOFIBROSARCOMA

Controversy has surrounded the myofibrosarcoma concept for several reasons. First, there is a close relationship between fibroblast and myofibroblasts: in many fibroblastic lesions, at least some cells show differentiation to myofibroblasts. The proportion of neoplastic myofibroblasts required is not defined and fibrosarcoma and myofibrosarcoma might represent a continuum. It appears from the observations described above, however, that a group of sarcomas can be recognized which are composed predominantly of myofibroblasts.

Also, myofibroblasts resemble fibroblasts and it remains difficult to be certain of myofibroblastic differentiation without electron microscopy; yet, the ultrastructural definition of the neoplastic myofibroblast is not agreed78. The debate principally concerns whether stress fibers and the fibronexus, a characteristic ultrastructural feature of reactive myofibroblasts, must be present for a diagnosis of myofibrosarcoma. In neoplastic cells, subcellular features can be incompletely or abnormally developed, so that the fibronexus has not been an absolute requirement for most investigators. Nevertheless, this structure has been observed in neoplastic cells in a number of such sarcomas24; indeed, due to being overlooked or misinterpreted as external lamina, it has perhaps been illustrated more frequently in published reports than it has been recognized by their authors14. In reality, identification of a cell type requires summation of several features, and the fibronexus is only one feature used to define myofibroblastic differentiation. Despite the superficial similarity of cytoplasmic filament patterns in both myofibroblasts and smooth muscle cells, the surface specialisations of the two cell types differ; unlike myofibroblasts, smooth muscle cells have external lamina, cell membrane plaques and caveolae. Finally, the cells of myofibrosarcoma and those of fibromatosis, an accepted myofibroblastic lesion, are ultrastructurally similar. It is noteworthy that in the case of Gabbiani et al, a metastasising myofibrosarcoma of pleura22, the fibronexus is not mentioned in their description of the ultrastructure, which corresponds to that accepted by most authors today.

It can be concluded that the fibronexus, whether completely or incompletely formed, is seen in some myofibrosarcomas, and in other cases the ultrastructure, in morphology and immunohistochemistry, are sufficiently distinctive to allow diagnosis.

With immunohistochemistry, neoplastic smooth muscle cells and myofibroblasts can both display actins and desmin, but the latter is less often seen in myofibroblastic neoplasms. Also, in myofibroblastic sarcomas, the actin staining is often manifested as a peripheral rim (correlating with the ultrastructural location of filament bundles) rather than throughout the cell48. The absence or rarity of h-caldesmon in both benign and malignant myofibroblastic lesions additionally supports their separate identity.15, 79

References

GENE EXPRESSION PROFILING OF SOFT TISSUE TUMORS

Matt van de Rijn MD PhD,
Stanford University Medical Center, Stanford, CA

Introduction:
High throughput microarray technologies are a discovery tool that allow for the determination of mRNA levels for many thousands of genes in a single experiment, a process referred to as gene expression profiling. Soft tissue tumors are rare lesions in which a large number of clinically relevant different diagnostic entities have been described. Relatively few truly diagnostic markers exist and many of these markers are not specific for a single entity. Global gene expression profiling allows for a systematic search of all human genes for novel diagnostic and prognostic markers and for potential therapeutic targets. Many groups have applied this technology to study soft tissue tumors. Using the same arrays, gene copy number changes can be determined on a gene-by-gene basis using DNA derived from fresh frozen tissue or from paraffin embedded material, a process called array-based comparative genomic hybridization (aCGH). Gene expression profiling and aCGH yield a wealth of data and the combination of data from gene expression profiling and aCGH can help focus attention on genes that are not only highly expressed in certain tumors but are also affected on a genomic level. Tissue microarrays are an efficient method to extend and validate the findings obtained from the initial “discovery” phase of the research, performed with cDNA microarrays. Recent developments allow formalin fixed material represented on TMAs to be examined not only by immunohistochemistry (IHC) but also by in situ hybridization (ISH). While the datasets obtained through gene arrays can measure several million datapoints or more, TMA datasets usually consist of several thousand datapoints. This nevertheless is more than can be interpreted from a simple table and we have developed software to aid in the management of these TMA datasets. The amount of information stored in histologic images far exceeds that contained in a fluorescence level for a spot in a gene array. Therefore rapid review of digital images is a necessity. I will give several examples of discoveries made by these relatively new techniques.
Examples:

1. **Epidermal Growth Factor Receptor as a potential therapeutic target in synovial sarcoma.**
 In a gene expression profiling study we noted high levels of epidermal growth factor receptor (EGFR) mRNA in synovial sarcoma. We subsequently confirmed EGFR protein expression using a TMA with 46 synovial sarcomas. As a result, the EORTC started a study using Erissa/ZD1839 as a targeted inhibitor of epidermal growth factor receptor. This trial is now accruing patients in The Netherlands, Belgium and France with other countries to follow (van Oosterom, personal communication, Sept 2003, Helsinki). This shows that gene expression profiling is a powerful tool to highlight targets for directed therapies in specific tumor subtypes.

2. **The PDGFb pathway highlighted by gene array analysis in DFSP.**
 In DFSP, the PDGFb gene was known to play a role in tumorigenesis as it was involved in the t(17;22) that fuses this gene to collagen 1α1. In a recent study on DFSP we confirmed the significance of the PDGF pathway by showing that DFSP has high levels of PDGFb. In addition we found that the receptor for PDGFb was also very highly expressed, thus mimicking the tumorigenic autocrine loop previously constructed in fibroblasts and glioblastoma cells. We showed that 2 other proteins, BRB2 and Protein Kinase C, that play roles in the PDGF pathway, were also highly and specifically expressed in DFSP. Finally, by aCGH we showed that BRB2 and PRKC are located on an amplified part of chromosome 17, presumably as part of the ring chromosome often seen in these tumors. These experiments demonstrate that the PDGF pathway plays an important role in DFSP and that this pathway may be a good target in treatment of this tumor.

3. **DOG1 a novel marker for GIST.**
 Others and we have shown that GISTs have a unique and specific gene expression profile. In the last year we have started to study a number of GIST specific genes, one of which will be highlighted here. In gene arrays studies we found that expression for FLJ10261, a hypothetical protein at that time, was very high in gastrointestinal stromal
tumors but low in most other sarcomas. We generated an antiserum (S284) against the peptides derived from the sequence for this hypothetical protein, and obtained very strong immunoreactivity with GISTs and mast cells, mimicking closely the reactivity of anti-kit/CD117 antisera. A cross reactivity between S284 and kit antisera on a possible shared epitope on the two proteins could be excluded by in situ hybridization experiments showing that mRNA was present in S284 reactive lesions but not in those that failed to react for this serum. Having proven the existence of an mRNA and protein derived from this sequence, we named the gene “Discovered on GIST-1” (DOG1). Next we identified on a 421 case STT TMA a subset of GIST-like lesions that failed to react for kit but did react for DOG1 by IHC and ISH. Subsequently, through collaboration with Drs Chris Corless and Mike Heinrich we could show that this subset of lesions consisted of the newly described subset of GISTs that do not have a mutation in the kit gene but instead carry a mutation in the PDGFRa gene. Clinically this may be a relevant marker, as many diagnosticians require kit reactivity today before a diagnosis of “GIST” is rendered, with the FDA considering making this a requirement. Thus the clinical significance of DOG1 as a marker is obvious as patients with GISTs that fail to react for kit antigen run the risk of not receiving imatinib mesylate (Gleevec) therapy.

Immunofluorescence studies on the GIST882 cell line (DR Jonathan Fletcher) have shown membrane staining for DOG1, consistent with the 8 transmembrane regions implied from its DNA sequence. The spatial relationship, if any, to kit, using the GIST882 cell line and its potential role as a therapeutic target will need to be determined.

References:
AN: Classification of clear-cell sarcoma as a subtype of melanoma by genomic profiling. Journal of Clinical Oncology 2003, 21:1775-1781

Neoplasms with Perivascular Epithelioid Cell Differentiation (PEComas): An Update

Andrew L. Folpe, M.D.
Emory University, Atlanta, GA

Introduction

The World Health Organization defines PEComas as “mesenchymal tumors composed of histologically and immunohistochemically distinctive perivascular epithelioid cells”. The concept of a family of neoplasms derived from these distinctive cells was first advanced by Bonetti and co-workers in a letter published in the American Journal of Surgical Pathology in 1992, in which they noted the presence in both angiomyolipoma (AML) and clear cell “sugar” tumor of the lung (CCST) of “an unusual cell type… immunoreactive with melanocytic markers, and exhibit(ing) an epithelioid appearance, a clear-acidophilic cytoplasm, and a perivascular distribution”.

The PEComa family of tumors has subsequently grown to include AML, CCST, lymphangioleiomyomatosis (LAM), and a variety of unusual visceral, intra-abdominal and soft tissue/bone tumors, described under the terms “clear cell myomelanocytic tumor of the falciform ligament/ligamentum teres” (CCMMT), “abdominopelvic sarcoma of perivascular epithelioid cells” and “primary extrapulmonary sugar tumor” (PEST), among others. There is a strong association between PEComas and the tuberous sclerosis complex (TSC).

Perivascular epithelioid cells

PEC are characterized by perivascular location, often with a radial arrangement of cells around the vascular lumen. Careful examination of PEComas will invariably reveal diagnostic blood vessels, in which the PEC appear to comprise the muscular wall, replacing the normal smooth muscle and collagen. Typically, the cells in an immediate perivascular location are most epithelioid and spindled cells resembling smooth muscle are seen away from vessels. PEC may accumulate large amounts of lipid, mimicking adipocytes or lipoblasts; such cells are usually found away from the blood vessels. Great variation is seen in the relative proportion of epithelioid, spindled and lipid-distended cells, accounting for their potential confusion with carcinomas, smooth muscle tumors and adipocytic tumors. PEC have clear to lightly eosinophilic cytoplasm, rather than the dense eosinophilia of true smooth muscle cells. Occasionally, PEC show a perinuclear eosinophilic zone, with surrounding clear cell change. They typically have small, centrally placed, normochromatic, round to oval nuclei with small nucleoli, although striking hyperchromasia and nuclear irregularity may be present.

“Cell of Origin”

No normal counterpart to the PEC has ever been identified in any organ.
Historical Timeline

1900: First use of term “angiomyolipoma” (Grawitz).
1911: Association between TSC and renal AML noted (Fischer).
1937: First description of LAM (Burrell and Ross).
1951: Complete histopathological description of AML (Morgan et al).
1963: CCST described (Liebow and Castleman).
1968: Term “lymphangiomyomatosis” coined (Frack et al).
1973: Association between LAM and TSC noted (Valensi).
1974: Association of AML and LAM described (Monteforte and Kohnen).
1976: Hepatic AML described (Ishak).
1991: HMB-45 positivity and ultrastructural confirmation of pre-melanosomes in AML (Weeks and Malott, Pea et al) and in CCST (Gaffey et al).
1992: Term “perivascular epithelioid cell” coined (Bonetti et al).
1993: HMB-45 positivity in LAM described (Chan et al).
1994: Dopa oxidase expression identified in AML, confirming melanogenesis (Kaiserling et al).
1994: LOH for TSC 1 and TSC2 demonstrated in AML (Green et al).
1996: Clonality demonstrated in AML (Green et al).
1996: CCST of pancreas reported (Zamboni et al).
1997: Epithelioid AML described (Eble et al).
1997: CCST reported in association with LAM in a patient with TSC (Flieder and Travis).
1999: CCST/LAM hybrid reported (Hironaka and Fukayama).
1999: Epithelioid hepatic AML described (Tsui et al).
1999: Clonal alternations noted in AML by CGH.
2000: Multiple reports of histologically and clinically malignant AML (Martignoni et al, Dalle et al, Radin and Ma, Ribalta et al).
2000: Clear cell myomelanocytic tumor of the falciform ligament described (Folpe et al, Tanaka et al).
2001: Monotypic AML of nasal cavity reported (Banerjee et al).
2001: PEComas (5 malignant, 3 benign) reported in ileum, rectum, pelvis, vulva, atrial septum (Bonetti et al, Tazelaar et al).
2002: PEComas reported in thigh (Folpe et al), breast (Govender et al), bone (Insabato et al).
2003: PEComas reported in thigh (Diment and Colecchia), uterus (Greene et al), bladder (Pan et al).
Clinical Features

AML is the most common PEComa, with a reported prevalence of 0.13% in healthy adults. Renal AML are found in approximately 48% of patients known to have tuberous sclerosis complex (TSC). The presence of multiple AML is diagnostic of TSC. However, approximately 80% of patients with AML do not have TSC. The prevalence of LAM is very low, with an estimated 1000 affected patients in the United States in 2001. Between 0.1 and 2.3% of TSC patients develop LAM. Approximately 47% of patients with LAM will also develop AML’s. CCST is extremely rare, with only approximately 40 reported cases. CCST has been reported in association with LAM and TSC. PEComas at other sites are extremely uncommon and are only very rarely associated with TSC.

Renal AML have a mean age of diagnosis of 45-55 years for non-TSC patients and 25-35 for TSC patients. Males outnumber females by 4:1. For unknown reasons, hepatic AML are far more common in women than in men. LAM occurs almost exclusively in women, with a mean age at presentation in the early 30’s, although exceptional cases have been documented in men. CCST show a slight female predominance, with a mean age at presentation of 57 years. CCMMT usually occur in young girls, with a mean age at diagnosis of 11 years. Uterine PEComas have a mean age at diagnosis of 54 years. Almost all other reported PEComas have been in women, with a wide age range.

Histopathology

AML usually present as expansile, non-infiltrative masses, which may have extensive hemorrhage. Classic AML shows triphasic histology, with tortuous, thick-walled blood vessels, irregularly arranged sheets and bundles of myoid-appearing PEC, and lipid-distended PEC (so-called “adipocytes”). Both thick-walled vessels with walls composed of PEC and vessels with normal smooth muscle wall are present in AML; the latter most likely represent ingrowth of normal host blood vessels. Cases with relative predominance of the myoid-appearing or lipid-distended PEC may be mistaken for smooth muscle or adipocytic tumors, respectively. Occasional cases of AML may show striking cytologic atypia, multinucleation, mitotic activity and focal necrosis (“atypical AML”). AML may also show almost exclusively epithelioid morphology (“epithelioid AML”) and mimic carcinoma. Cases described as epithelioid AML with clear cell change and extrapulmonary CCST appear to represent the same entity, and their distinction is arbitrary.

In the lung, LAM consists of a proliferation of myoid-appearing PEC distributed around bronchial lymphatics, interlobular septae and pleura. Rare cases show prominent clear cell change, giving the appearance of multiple CCST arranged in a LAM-like distribution. LAM of lymph nodes or the thoracic duct is characterized by a perilymphatic proliferation of PEC.

Pulmonary CCST are peripherally located, unencapsulated tumors composed of typical
PEC arrayed around thin-walled vessels. Entrapment of alveoli is seen. Extra-pulmonary CCST may entirely resemble their pulmonary counterparts, but often display nuclear atypia, mitotic activity and necrosis.

As originally described, CCMMT differs somewhat from other PEComas in that it is predominantly a spindle cell lesion. CCMMT consists of relatively uniform, moderate sized cells arranged in fascicles and nests, arranged around an elaborate capillary network, reminiscent of renal cell carcinoma. The histologic features of CCMMT, CCST and epithelioid AML show great overlap, supporting the view that these are simply morphologic variants of a single pathologic entity.

Immunohistochemistry

The PEC is characterized by co-expression of melanocytic markers, such as gp 100 protein (mAb HMB-45), Melan-A, tyrosinase, and microphthalmia transcription factor, and muscle markers, such as smooth muscle actin, pan-muscle actin, muscle myosin and calponin. Desmin is less often positive and cytokeratin and S100 protein are usually absent. It should be recognized, however, that some PEComas do express S100 protein, and this finding does not exclude this diagnosis. The most sensitive melanocytic markers for the diagnosis of PEComa are HMB-45, Melan-A and microphthalmia transcription factor. In AML, co-expression of melanocytic and smooth muscle markers is seen in both myoid-appearing and lipid-distended PEC, confirming the unitary nature of these two morphologic variants. As a general rule, exclusively epithelioid tumors tend to express melanocytic markers more strongly than myoid markers, with the opposite found in predominantly spindled PEComas.

Genetics

The genes involved in TSC are TSC1 on chromosome 9q34 and TSC2 on chromosome 16p13.3. The proteins products of TSC1, hamartin, and TSC2, tuberin, function as tumor suppressors and loss of heterozygosity at these loci and absence of their associated proteins has been shown in both TSC-associated and sporadic AML and LAM. A small number of CCMMT have also been shown to lack tuberin expression. Although AML was previously considered a hamartoma, recent evidence including cytogenetic demonstration of clonal abnormalities, comparative genetic hybridization studies, and X-chromosome inactivation studies strongly supports its neoplastic origin.

Prognosis

Clear criteria for malignancy in PEComas have not been elaborated. It is widely acknowledged that AML may show striking atypical features, as described above, but behave in a benign fashion. The difficulty in confidently recognizing malignancy in AML is compounded by the well-known existence of multicentric AML and AML arising in lymph nodes. It appears fair to state that classic triphasic AML are invariably benign, even in the presence of atypical cytologic features. However, clinically malignant (i.e.,
metastatic) AML, usually of the epithelioid type, have been convincingly documented. Malignant PEComas with both sarcoma-like and carcinoma-like histology have been reported to arise in pre-existing benign AML. Clinically malignant pulmonary and extrapulmonary CCST have been reported. On the basis of these prior reports, it appears that PEComas displaying any combination of infiltrative growth, marked hypercellularity, nuclear enlargement and hyperchromasia, high mitotic activity, atypical mitotic figures, and coagulative necrosis should be regarded as malignant. Malignant PEComas are aggressive sarcomas that frequently result in the death of affected patients.

Conclusions

Although AML has been known for quite some time, it has only recently become clear that it is part of a family of tumors that may arise in essentially any location in the body. The members of this remarkable family of tumors, now known as PEComas, are characterized by the distinctive morphology of their constituent PEC, and by their unusual “myomelanocytic” immunophenotype. Although it had been thought that all AML and related lesions were benign, it is increasingly obvious that many PEComas are both histologically and clinically malignant. With the discovery of the genetic underpinnings of TSC and the TSC-related tumors, it is anticipated that further study will greatly increase our understanding of the pathogenesis of the PEComas.

Selected References

THE MANY FACES OF OSTEOSARCOMA

Andrew Rosenberg MD
Massachusetts General Hospital, Boston, MA
Advantages and Pitfalls of Cytogenetic, Molecular Cytogenetic, and Molecular Diagnostic Testing in Bone and Soft Tissue Tumors

Julia A. Bridge, M.D.

International Society of Bone and Soft Tissue Pathology
2004
INTRODUCTION

The pathogenesis of bone and soft tissue tumors is a multistep process stemming from somatic mutations that impair the regulation of normal cell development, cell proliferation, and other fundamental cellular activities. The elucidation of this process has been challenging because the genetic events are unique for different mesenchymal tumor subtypes. However, enormous progress has been achieved with the advancement of cytogenetic and molecular genetic techniques. As a result, relevant oncogenes and tumor suppressor genes have been identified and localized, and new gene constructs and their protein products that result from translocations during sarcomagenesis have been determined. The identification of tumor-specific genetic markers for bone and soft tissue tumors such as Ewing sarcoma has added a new dimension to the formulation of a diagnosis and the resolution of cellular origin. Many of the genetic markers appear to have prognostic value, and studies are under way to determine their potential applications as specific therapeutic targets.

GENETIC APPROACHES COMMONLY USED AS DIAGNOSTIC AIDS

CYTOGENETIC ANALYSIS

Specimen Requirements

Tissue submitted for cytogenetic analysis must be fresh (not frozen or fixed in formalin) because living, dividing cells are required. A mesenchymal tumor sample submitted for cytogenetic analysis should be representative of the neoplastic process and preferably be part of the specimen submitted for pathologic study. Ideally, a 1 to 2 cm³ (approximately 0.5 to 1.0 g) fresh sample is provided for analysis. Also, small biopsy specimens or fine-needle aspirates (less than 500 mg) can be analyzed successfully, but prolonged culture may be needed to produce enough cells for examination. Necrotic tissue and nonneoplastic tissue should be dissected from the sample. The tumor tissue should be transported to the laboratory in sterile culture media or buffer solution (such as Hank’s buffered salt solution) as soon as possible after surgical removal. Specimens sent over long distances (requiring 24 to 48 hours for delivery) to cytogenetic laboratories can be transported at room temperature or refrigerated (not frozen) in sterile isotonic saline or, preferably, culture media containing serum.

Cell Culture and Chromosome Banding

The basic process of cell culturing is the same for all bone and soft tissue lesions. Briefly, sterile tumor tissue is minced mechanically with scissors or a scalpel and enzymatically disaggregated by incubation in collagenase (24). The resulting single cells and small cell clusters are incubated at 37°C and 5 percent CO₂ and are inspected daily under an inverted microscope for growth. When an optimal number of mitoses is observed, the proliferating cells are arrested in mid-division. The time that a bone or soft tissue tumor may be cultured to attain satisfactory karyotypic findings varies depending on the histopathologic type, grade of tumor, tumor cellularity, and size of specimen submitted for analysis. A short-term culture usually results in a sufficient number of mitoses in 10 days or less. Lengthy culture times should be avoided because undesired overgrowth by normal fibroblasts is more likely to occur.

An alternative to tissue culture is direct harvest. With this technique, endemic dividing cells are arrested after a 1- to 12-hour incubation in colchicine and culture medium. This method is useful for obtaining fast or preliminary results but is limited by the in vivo mitotic index. Thus, direct harvest is most useful for high-grade tumors. Also, for best success, it is imperative that the laboratory receive the tissue sample within 1 hour after biopsy.

Chromosomes, as they appear in a metaphase spread, consist of tightly coiled DNA and protein. A karyotype is the somatic chromosomal complement of an individual or species. For humans, the normal karyotype consists of 46 chromosomes aligned in a standard sequence according to size, centromere location, and banding pattern. G-banding is the most common form of banding. This is attributable to the relative ease of performing the technique, the reliability of the results, and the permanence of the preparations. G-bands can be obtained with Giemsa or Wright stains pretreated with
trypsin or phosphate buffer, respectively. The number of alternating light and dark bands detectable with G-banding in the haploid genome varies with the level of chromosomal contraction in each metaphase cell, but it is in the range of 350 to 550 bands per haploid set. One band represents approximately 5 to 10 x 10^6 base pairs (bp) of DNA. A relationship exists between the different types of bands and gene density, base composition, and replication time; however, the functional basis for the interdependence of these features of chromosome structure and behavior is not known.

Nomenclature

An international system for designating bands in human chromosomes was introduced at the 1971 conference in Paris. In this system, the short and long arms are divided into several regions, each defined as an area of chromosome lying between two adjacent landmarks. Landmarks are defined as consistent and distinct morphologic features important for identifying chromosomes. (Strictly, landmarks, like bands, are features of staining rather than morphologic features.) Regions are numbered consecutively from the centromere to the telomere (distal end of a chromosome) on each arm; within each region, the individual bands are numbered in the same direction. Thus, the complete designation of a band consists of the chromosome number, a letter to indicate the short or long arm, a number for the region, and a number for the band and subband; for example, Xp11.2 refers to the short arm of chromosome X, region 1, band 1, subband 2.

\[Xp11.2 \]

\[X = \text{chromosome X} \]
\[p = \text{short (petite) arm} \]
\[1 = \text{region 1} \]
\[1 = \text{band 1} \]
\[2 = \text{sub-band 2} \]

The two major types of chromosomal abnormalities are numerical and structural. Numerical abnormalities manifest as changes in complete sets of chromosomes (i.e., triploid [3N] or tetraploid [4N] complements) or in the number of individual chromosomes (i.e., loss of a single chromosome [monosomy] or gain of a single chromosome [trisomy]). Structural abnormalities of chromosomes result from chromosomal breakage and rejoining of the broken ends to form new combinations. A frequently observed structural abnormality is translocation. In a reciprocal translocation, chromosomal material is exchanged between two or more nonhomologous chromosomes. An example of the shorthand system used to describe numerical and structural aberrations is 47,XY,+8,t(11;22)(q24;q12), in which 47 indicates the total chromosome number, XY indicates the sex constitution, and +8 indicates an extra copy, trisomy, of chromosome 8. The “t” is an abbreviation for translocation and in this example specifies an exchange of chromosomal material between the long arms of chromosomes 11 and 22 at bands q24 and q12, respectively. The 11;22 translocation is a characteristic rearrangement in Ewing sarcoma, and trisomy 8 is a frequent secondary anomaly in this neoplasm.
Advantages and Limitations of Conventional Cytogenetic Analysis

Table 1: Conventional Cytogenetic Analysis

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provides global information in a single assay.</td>
<td>Requires fresh tissue.</td>
</tr>
<tr>
<td>• includes primary & secondary anomalies</td>
<td>• although direct preparations can be performed, cell culture is typically required (1-10 days).</td>
</tr>
<tr>
<td>• knowledge of anticipated anomaly or histologic diagnosis not necessary</td>
<td></td>
</tr>
<tr>
<td>Variants undetectable by interphase FISH or RT-PCR may be uncovered.</td>
<td>• may encounter complex karyotypes with suboptimal morphology.</td>
</tr>
<tr>
<td></td>
<td>• submicroscopic or cryptic rearrangements may result in a false negative result.</td>
</tr>
<tr>
<td>Diagnostically useful.</td>
<td>Normal karyotypes may be observed following therapy-induced tumor necrosis or overgrowth of normal supporting stromal cells.</td>
</tr>
<tr>
<td>• sensitive and specific</td>
<td></td>
</tr>
<tr>
<td>• can be performed on fine needle aspirates</td>
<td></td>
</tr>
<tr>
<td>Provides direction for molecular studies of pathogenetically important genes.</td>
<td>Difficulties encountered with bone tumors include low cell density and the release of cells from the bone matrix.</td>
</tr>
</tbody>
</table>

Molecular Cytogenetics

A revolutionary tool in the analysis and characterization of chromosomes and chromosomal abnormalities has been the development of in situ hybridization (ISH) techniques. Hybridization refers to the binding or annealing of complementary DNA or RNA sequences that serve as probes. With this approach, specific nucleic acid sequences can be detected in morphologically preserved chromosomes, cells, or tissue sections.

Molecular cytogenetic assays typically are performed with chromosome-specific probes labeled with fluorescent dyes such as fluorescein and rhodamine and detected with fluorescence microscopy (fluorescence in situ hybridization [FISH]). Alternatively, hybridization signals can be detected with peroxidase or alkaline phosphatase, but these approaches are generally less sensitive.

Specimen Requirements

This technique can be performed on fresh or aged samples (such as blood smears, touch imprint cytologic preparations, or cytospin preparations), paraffin-embedded tissue sections, and disaggregated cells retrieved from fresh, frozen, or paraffin-embedded material. Blood smears, touch imprint cytologic preparations, and cytospin preparations are air-dried and subsequently fixed in methanol:glacial acetic acid (3:1) for 5 minutes. To visualize an anomaly within a specific region of a tumor or within a specific cell type, a 4- to 6-µm-thick paraffin-embedded tissue section can be used. Analysis of thin sections, however, is limited because portions of most nuclei are lost during sectioning, and this may lead to false-positive results in the evaluation of chromosomal deletions or losses. For the most accurate assessment of subtle aneuploidy changes, the preferred approach is to obtain whole or intact nuclei by disaggregating and releasing cells from a much thicker (50 to 60 µm) section. FISH is a same day or overnight procedure, depending on the probes used or the type of specimen analyzed (or both).
Probes

Chromosomal probes (complementary DNA sequences) frequently used to examine bone and soft tissue tumors can be divided into three categories:

- **Centromere-specific**
 tandemly repeated monomers or α-satellite sequences (171 bp) that are unique for each chromosome. Useful for chromosome enumeration.

- **Locus-specific**
 single copy probes homologous to specific targets (15- >500 kb). Often used for assessing oncogenes or tumor suppressor genes.

- **“Paint” or whole chromosome**
 comprised of probe mixtures with homology at multiple sites along the target chromosomes. Useful for characterizing structural chromosomal anomalies.

Chromosome Probe Examples

- = example of centromere-specific probe
- = example of locus-specific probe
- = example of whole chromosome (paint) probe

Interphase Cell Appearance

- centromere-specific probe
- centromere & locus-specific probes

Technical variations

Conventional karyotyping is limited by its inability to detect cryptic translocations or to identify marker chromosomes accurately. With recently developed universal chromosome painting techniques, all chromosomes can be analyzed simultaneously. Two similar approaches have been developed: spectral karyotype analysis (SKY) and multilocus fluorescence in situ hybridization (M-FISH). Both techniques are based on the principle that the differential display of colored fluorescent chromosome-specific paints provides a complete analysis of the human chromosomal complement. With the use of combinations of 23 different colored paints as a “cocktail probe,” subtle differences in fluorochrome labeling profiles after hybridization with the cocktail probe allow the computer to assign a unique color to each chromosome pair. Thus, abnormal chromosomes in the karyotype of a tumor can be identified by the pattern of color distribution along the axis of the chromosome so that rearrangements between different chromosomes lead to a distinct transition from one color to another at the position of the breakpoint, greatly facilitating the identification of subtle or cryptic rearrangements. This technique is suited particularly to solid tumors in which the complexity of the karyotypes may often mask the presence of recurrent chromosomal aberrations.
Advantages and Limitations of Molecular Cytogenetic Analysis

Table 2: Molecular Cytogenetic Analysis

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can be performed on metaphase or interphase cell preparations (fresh, frozen or paraffin-embedded material). • can localize anomaly within specific cells or tissue types</td>
<td>More targeted approach; not screening tool (generally requires prior knowledge of anomaly of interest). • exceptions would be CGH & SKY</td>
</tr>
<tr>
<td>Can provide results when tissue is insufficient or unsatisfactory for cytogenetic analysis, when conventional cytogenetics has failed to yield results or when cryptic rearrangements are present.</td>
<td>Still a relatively gross approach when contrasting other molecular approaches capable of detecting single base mutations.</td>
</tr>
<tr>
<td>Diagnostically useful. • sensitive and specific</td>
<td>• requires fluorescence microscopy (signal fading). • interpretation may be challenging when analyzing suboptimal specimens (i.e., background fluorescence or autofluorescence, particularly with paraffin-embedded material).</td>
</tr>
<tr>
<td>Rapid turn-around time.</td>
<td>FISH nomenclature not consistent among laboratories.</td>
</tr>
</tbody>
</table>

REVERSE TRANSCRIPTION – POLYMERASE CHAIN REACTION ANALYSIS (RT-PCR)

Translocations, or exchange of chromosomal material between two or more nonhomologous chromosomes, are encountered frequently as tumor-specific anomalies in mesenchymal neoplasms. These tumor-specific translocations serve as important guides for molecular biologists conducting positional cloning studies of the genes at the translocation breakpoints. The most common genetic consequence of these translocation events is the fusion of two genes, one from each translocation partner, resulting in the formation of a chimeric gene. The fusion proteins encoded by these chimeric genes are not found in normal cells and are tumor-specific.

In sarcomas, the fusion genes most often code for aberrant transcription factors that result in inhibition of normal cellular differentiation, cell cycle activation, and loss of responsiveness to extracellular signals (Table 3). Note that new cytogenetic as well as molecular genetic variants continue to be defined. Cytogenetic variants are defined as differing chromosomal translocation partners [i.e. t(1;13) and t(2;13) in alveolar rhabdomyosarcoma] and molecular variants are often the result of genomic breakpoint differences that lead to distinct fusion product exon combinations. For example, the two most frequent exon combinations in Ewing sarcoma-associated EWS/FLI1 fusion transcripts include fusion of EWS exon 7 to FLI1 exon 6 (type 1) and fusion of EWS exon 7 to FLI1 exon 5 (type 2). These molecular variants can be detected by their unique RT-PCR product band size. The identity of less common or unexpected product band sizes should be confirmed utilizing additional approaches such as direct sequencing or digestion with specific restriction endonucleases.
Table 3: Characteristic and Variant Chromosomal Translocations and Associated Fusion Genes in Bone and Soft Tissue Sarcomas

<table>
<thead>
<tr>
<th>Neoplasm</th>
<th>Translocation</th>
<th>Fusion gene(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alveolar soft part sarcoma(^a)</td>
<td>t(X;17)(p11.2;q25.3)</td>
<td>TFE3/ASPL</td>
</tr>
<tr>
<td>Alveolar rhabdomyosarcoma</td>
<td>t(2;13)(q35;q14)</td>
<td>PAX3/FKHR</td>
</tr>
<tr>
<td></td>
<td>t(1;13)(p36;q14)</td>
<td>PAX7/FKHR</td>
</tr>
<tr>
<td></td>
<td>t(X;2)(q13;q35)</td>
<td>PAX3/AFX</td>
</tr>
<tr>
<td>Clear cell sarcoma</td>
<td>t(12;22)(q13;q12)</td>
<td>EWS/ATF1</td>
</tr>
<tr>
<td>Congenital fibrosarcoma(^b)</td>
<td>t(12;15)(p13;q25)</td>
<td>ETV6/NTRK3</td>
</tr>
<tr>
<td>Dermatofibrosarcoma protuberans</td>
<td>t(17;22)(q22;q13)</td>
<td>COL1A1/PDGFb</td>
</tr>
<tr>
<td>Epithelioid hemangioendothelioma</td>
<td>t(1;3)(p36;q25)</td>
<td>?</td>
</tr>
<tr>
<td>Ewing sarcoma/pPNET</td>
<td>t(11;22)(q24;q12)</td>
<td>EWS/FLII</td>
</tr>
<tr>
<td></td>
<td>t(21;22)(q22;q12)</td>
<td>EWS/ERG</td>
</tr>
<tr>
<td></td>
<td>t(7;22)(q22;q12)</td>
<td>EWS/ETVI</td>
</tr>
<tr>
<td></td>
<td>t(17;22)(q21;q12)</td>
<td>EWS/EIAF</td>
</tr>
<tr>
<td></td>
<td>t(2;22)(q33;q12)</td>
<td>EWS/FEV</td>
</tr>
<tr>
<td></td>
<td>inv(22)(q12q12)</td>
<td>EWS/ZSG</td>
</tr>
<tr>
<td>Extraskeletal myxoid chondrosarcoma</td>
<td>t(9;22)(q22-31;q12)</td>
<td>EWS/CHN(^c)</td>
</tr>
<tr>
<td></td>
<td>t(9;17)(q22;q11)</td>
<td>TAF2N/CHN</td>
</tr>
<tr>
<td>Malignant hemangiopericytoma</td>
<td>t(12;19)(q13;q13)</td>
<td>?</td>
</tr>
<tr>
<td>Myxoid/round cell liposarcoma</td>
<td>t(12;16)(q13;p11)</td>
<td>TLS(^d)/CHOP</td>
</tr>
<tr>
<td></td>
<td>t(12;22)(q13;q12)</td>
<td>EWS/CHOP</td>
</tr>
<tr>
<td>Synovial sarcoma</td>
<td>t(X;18)(p11.2;q11.2)</td>
<td>SYT/SSXI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SYT/SSX2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SYT/SSX4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SS18L1/SSXI(^e)</td>
</tr>
</tbody>
</table>

\(^a\)This translocation is seen also in a subset of pediatric renal neoplasms.

\(^b\)This translocation is seen also in congenital mesoblastic nephromas.

\(^c\)Also referred to as TEC.

\(^d\)Also referred to as FUS.

Specimen Requirements

The highly specific gene rearrangements that occur from chromosomal translocation in bone and soft tissue tumors can be identified with reverse transcriptase polymerase chain reaction (RT-PCR) analysis. The PCR technique uses specific synthetic primers to amplify a section of a gene in vitro. With the additional step of reverse transcription (mRNA → cDNA), PCR can be carried out on RNA. Snap frozen tissue is preferred for RNA extraction and RT-PCR analysis, but this procedure can also be performed on archival (paraffin-embedded) material if the RNA is of sufficient quality.

RT-PCR analysis is remarkably sensitive. It may allow for the detection of abnormalities present in cells too few to be identified with traditional cytogenetic or FISH methods. It may be suitable for the detection or monitoring of minimal residual disease. Also, RT-PCR analysis is not dependent on successful cell culture and, similar to FISH, it is rapid, with a short turnaround time. Compared with
cytogenetic analysis, the greatest disadvantage of RT-PCR analysis is the inability to detect chromosomal anomalies other than those for which the test was designed. With conventional cytogenetic analysis, all major chromosomal abnormalities, including those not initially anticipated by the clinician or laboratorian, may be uncovered.

Advantages and Limitations of RT-PCR Analysis

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can be performed on fresh, frozen or paraffin-embedded material.</td>
<td>Not all sarcomas exhibit characteristic fusion gene transcripts.</td>
</tr>
<tr>
<td>• tissue quantity requirement is small</td>
<td></td>
</tr>
<tr>
<td>Can provide results when tissue is insufficient or unsatisfactory for cytogenetic analysis, when conventional cytogenetics has failed to yield results or when cryptic rearrangements are present.</td>
<td>Targeted approach; not screening tool.</td>
</tr>
<tr>
<td>• requires prior knowledge of fusion transcript.</td>
<td></td>
</tr>
<tr>
<td>Diagnostically useful.</td>
<td>RNA quality may be inadequate secondary to RNA degradation.</td>
</tr>
<tr>
<td>• sensitive and specific</td>
<td></td>
</tr>
<tr>
<td>• rapid turn-around-time.</td>
<td></td>
</tr>
<tr>
<td>Because of its remarkable sensitivity, RT-PCR may be useful for the detection of minimal residual disease or early relapsed disease.</td>
<td>• devised primer sets may not detect unusual molecular variants (false negative).</td>
</tr>
<tr>
<td></td>
<td>• identification of some product bands may require validation by additional approaches such as direct sequencing, transfer and hybridization with internal oligonucleotide probes, digestion with specific restriction endonucleases, or re-amplification with internal primers (nested RT-PCR).</td>
</tr>
</tbody>
</table>

CONCLUSIONS

Dramatic advances in cytogenetic and molecular biologic techniques have furthered our understanding of sarcomagenesis. Cytogenetic and molecular genetic assays have a direct, potentially decisive role in the examination of bone and soft tissue tumors, and many such assays are used routinely for diagnostic and prognostic purposes in molecular pathology laboratories. However, genetic analysis is not a panacea for histopathologic study, but rather it is a powerful adjunct to complement conventional microscopy and radiographic assessment in the formulation of an accurate diagnosis. By virtue of their exquisite sensitivity, molecular techniques appear superior to standard methods in the assessment of minimal residual disease or early relapse of disease. Future advancements will include the development of a new class of antineoplastic agents based on the underlying biologic events in bone and soft tissue sarcomas for the clinical management of these malignancies.
Summary: Recommended Processing of Tissue for Genetic Analyses (Algorithm Approach)

1 cm³ (ideally) fresh representative tumor tissue

- Culture or transport media
- Cytologic touch preparations
- Snap freeze tissue

Disaggregate mechanically & enzymatically

Store liquid N₂ or -120°C

Culture
- 5% CO₂
- 37°C

Harvest supernatant (48-72 hrs after receipt of specimen)

Discontinue culture (dx by RT-PCR or FISH)

Harvest 2-10 days after receipt of specimen

Cytogenetic analysis

Store cultured cells (not needed for cytogenetic analysis) for future studies

References

SMOOTH MUSCLE TUMORS OF SOFT TISSUE:

Criteria of Malignancy and Prognostic Factors

Sharon W. Weiss, M.D.
Emory University School of Medicine, Atlanta, GA, USA

INTRODUCTION

The most significant question related to soft tissue smooth muscle tumors is whether one can accurately and reproducibly separate benign tumors from malignant ones. Stated in another manner, are all smooth muscle tumors of soft tissue fundamentally malignant but differ only in the degree of malignancy? Or are there two subsets, one benign and one malignant? This lecture will address the current criteria for separating leiomyomas from leiomyosarcomas and discuss prognostic factors in the latter.

SMOOTH MUSCLE DIFFERENTIATION

The initial approach to evaluating smooth muscle tumors is clearly establishing myoid (as opposed to myofibroblastic) differentiation of the cells. Differentiated smooth muscle have an elongated, fusiform shape, centrally located cylindrical nucleus occasionally indented by a clear perinuclear vacuole, and deeply eosinophilic cytoplasm due to the presence of clumps of myofilaments which are arranged parallel to the cell axis. The cells are arranged in fascicles intersecting one another at right angle. Myofilamentous material can sometimes be appreciated on hematoxylin and eosin-stained sections, but is better seen in trichrome preparations where it appears as red parallel "hairs" or "streaks extending the length of the cell. Occasionally the cytoplasm may have a "clotted" appearance due to clumped myofilamentous material. The cytoplasm of a smooth muscle cell is diffusely actin positive (alpha smooth muscle actin, muscle specific actin) and commonly desmin positive depending on the type of smooth muscle cell and level of differentiation. It should be noted in passing that desmin may be expressed anomalously by several non-myogenic neoplasms (e.g. tenosynovial giant cell tumor, angiomatoid fibrous histiocytoma, melanoma, desmoplastic small round cell tumor). Thus a tumor which bears little resemblance to a smooth muscle tumor should not be interpreted as such simply because desmin is present. Typically anomalous desmin is present as dot-like immunoreactivity in a cell.

In contrast myofibroblasts have an appearance intermediate between a smooth muscle cell and fibroblast. Although classically defined by ultrastructural features (modestly developed endoplasmic reticulum and peripheral myofilaments with focal densities, indented nuclei, and fibronexus junctions) they possess certain characteristic light microscopic features as well. In contrast to smooth muscle cells, they range from spindled to stellate in shape with vesicular nuclei and more lightly staining eosinophilic...
cytoplasm. The immunophenotype of myofibroblasts varies depending on its functional state. However, alpha smooth muscle actin is considered the most reliable marker. It is located peripherally within myofibroblasts in a characteristic “tram track” pattern.3

LEIOMYOMAS OF DEEP SOFT TISSUE (L-DST)

The very existence of L-DST has been questioned over the years because of their apparent rarity and the fact that with long term follow up some apparent “leiomyomas” have behaved aggressively.6,7 However, the appearance of two recent studies of reasonable size with excellent follow up supports the view that leiomyomas of deep soft tissue exist, but they should be diagnosed cautiously using stringent histologic criteria.8,9 Criteria common to both studies were that the lesions should have no cytological atypia and no coagulative necrosis. Defined in this manner both studies found that mitotic activity was also usually absent. When mitotic activity is encountered it is usually present in retroperitoneal/abdominal leiomyomas for the reasons discussed. L-DST segregate into two distinct subtypes.

Somatic soft tissue leiomyomas affect the sexes equally, develop in the extremities, usually the thigh and are frequently calcified. They are composed of mature-appearing smooth muscle cells with abundant eosinophilic cytoplasm which, by definition, lack atypia and necrosis and generally are amitotic (<1 mitoses/50 HPF). Follow up in 11 of 13 cases revealed no recurrence or metastasis within a follow up period of approximately 5 yr. (range 5-97 mos.).8

Retroperitoneal/abdominal leiomyomas occur preferentially in women during the perimenopausal period usually in the pelvic retroperitoneum. In some cases the lesions may be multiple.8,9 Histologically these lesions resemble uterine leiomyomas and are composed of intersecting fascicles of slender mature smooth muscle cells sometimes displaying a cord-like pattern, hydropic change, stromal hyalinization, and fatty change. These tumors are commonly positive for estrogen/progesterone receptor proteins. Unlike somatic soft tissue leiomyomas, 20% of retroperitoneal/abdominal leiomyomas display low levels of mitotic activity (1-5/50 HPF). Despite this feature, less than 10% of lesions recur and none has metastasized in follow up periods averaging from 42-142 mos.7,8 The striking female predilection of this type of leiomyoma suggests they arise from hormonally sensitive smooth muscle and are functionally similar to uterine leiomyomas. Like uterine leiomyomas mitotic activity probably does not signify malignancy in the absence of other adverse histologic parameters (e.g. atypia, coagulative necrosis). The location of these lesions and the fact that many women have had hysterectomies years previously suggests that these are not simply detached or parasitic uterine leiomyomas.8

SOFT TISSUE LEIOMYOSARCOMA

Leiomyosarcomas can be divided into several subgroups: cutaneous, major vessel, and soft tissue.2 Cutaneous lesions are a distinct clinicopathologic entity that arise from pilar structures and when restricted to the dermis have an excellent prognosis with little or no risk of dissemination. Major vessel leiomyosarcoma (e.g. inferior vena cava, renal vein) are extremely rare and pose special management problems. Soft tissue leiomyosarcomas
are the principal lesions which come to the attention of the general surgical pathologist. Because of the difference in prognosis it is useful to discuss these as two groups, those arising in the retroperitoneum and body cavities and those arising in the peripheral or somatic soft tissues of the extremities.

Retroperitoneal/abdominal leiomyosarcomas account for about three quarters of all leiomyosarcomas. They develop preferentially in women with a peak incidence in the 7th decade. Symptoms are non specific and referable to a mass lesion in most instances. The majority occur in the retroperitoneum followed by pelvic retroperitoneum and abdominal cavity. Virtually all tumors are >5 cm and most >10 cm when first detected. These lesions vary greatly in the degree of differentiation, but certain generalizations can be made related to malignant features. Virtually all lesions reported as leiomyosarcomas possess some degree of nuclear atypia and minimum mitotic rate of 1-4/10 HPF. In addition, about 50-75% have areas of coagulative necrosis. The prognosis is poor with 80-95% of patients dying of disease within follow up periods ranging from 2-5 yrs. Thus far it has been difficult to identify independent prognostic factors in this disease. In particular neither size nor mitotic activity closely correlates with outcome. This probably reflects the fact that in the retroperitoneum sarcomas tend to be extremely large and thus the advantage associated with small tumor size is a moot point.

Somatic soft tissue leiomyosarcomas develop in either superficial (subcutis) or deep soft tissues of the extremities where they are usually intimately associated with a small vessel. Despite this relationship few are associated with symptoms of vascular compromise as occurs with leiomyosarcomas arising from major vessels. These lesions are considerably smaller (averaging approximately 5 cm in diameter) than retroperitoneal leiomyosarcomas when first detected. All lesions possess atypia and mitotic activity but the latter varies from as few as <1/10 HPF in our experience. Approximately one half of patients die of metastatic disease. Various prognostic factors have been correlated with outcome including age (>62 yr.), size (>4cm), necrosis, FFCC grade, and vascular invasion, and whether the tumor has been "disrupted" due to a previous biopsy or incomplete excision. The concept that a previous biopsy or incomplete excision places a patient at increased risk to develop metastasis is a relatively novel one in soft tissue. Since "disruption" occurs most often with large, deep lesions, it is not clear whether it represents a "surrogate marker" of large deep lesions or whether it is a reflection of tumor dislodgment and entry into the bloodstream. However, it does appear that L-SST have an unexpectedly aggressive course given their overall size and grade when first detected and that feature may well relate to its angiocentricity. Although mitotic activity is certainly important in establishing a diagnosis of malignancy, it has not been possible to closely link actual mitotic rates with outcome. Thus, once the diagnosis of malignancy has been made by a combination of atypia and any level of mitotic activity, the actual level of mitotic activity per se does not provide incremental prognostic information concerning metastatic risk.

SMOOTH MUSCLE TUMORS IN IMMUNOCOMPROMISED PATIENTS

Smooth muscle tumors occur in immunocompromised patients at a greater frequency than the general population. Initially reported following renal transplantation
and immunosuppression primarily in children, smooth muscle tumors have now been reported in patients with various types of organ transplants, in patients with AIDS, and in patients with congenital immunodeficiency. The common denominator in all cases appears to EBV infection in the setting of immunocompromise. EBV can be detected by in situ hybridization in virtually all tumors studied and EBV surface receptor protein (CD21) in some. EBV gene expression patterns correspond to those observed in post-transplantation lymphoproliferative (PT-LPD) and not with other EBV-associated malignancies (e.g. Burkitt's lymphoma). Like PT-LPD, EBV-associated smooth muscle tumors can have a variable outcome depending on the immune status of the patient. Patients have responded to antiviral therapy and others to reduction in immunosuppression, although without such intervention an untoward outcome may be anticipated.

Owing to the paucity of illustrations associated with the sparse number of reports, it is difficult to characterize the tumors. In most cases mitotic activity has been noted. Peculiar to this form of smooth muscle tumor has been the observation that the muscle walls of vessels adjacent to the tumors have displayed proliferative changes suggestive of early or pre-malignant changes. In addition, we have noted infiltration of the tumor by atypical lymphocytes. Whether these changes are sufficiently prevalent to allow the diagnosis of EBV-associated smooth muscle tumors on hematoxylin and eosin stained slides will await further descriptions. Since the immune status of the patient appears to play a more significant role in outcome than an actual histologic assessment, it seems prudent to label these lesions "EBV-associated smooth muscle tumor" rather than leiomyoma or leiomyosarcoma. In fact, it now appears that patients with multiple tumors may in fact have multifocal rather than metastatic disease. This suggestion has been proposed by authors who have noted clonally-distinct EBV populations in different lesions from the same patient.

CONCLUSIONS

To return to our original question, what conclusions can be made concerning benignancy and malignancy in smooth muscle tumors. Because of sample sizes, we cannot categorically rule out the possibility that smooth muscle tumors represent a continuum in which there is variable risk of malignant behavior, as has been suggested for gastrointestinal stromal tumors.

- However, the data suggest that a subset of smooth muscle tumors can comfortably be labelled “leiomyomas.”

- Atypia appears to be the most useful way in separating benign smooth muscle tumors from malignant ones. Mitotic activity parallels atypia in the majority of smooth muscle tumors. Somatic leiomyomas tend to have little or no mitotic activity (<1/50 HPF) whereas abdominal/retroperitoneal leiomyomas have low levels (1-5/50 HPF) similar to uterine leiomyomas. Abdominal/retroperitoneal “leiomyomas” with higher levels of mitotic activity are better considered of uncertain malignant potential until further data is forthcoming.
• Smooth muscle tumor with atypia should provisionally be considered malignant and confirmed by identifying mitotic activity through careful observation and sampling. In the absence of mitotic activity, it is probably best to label the lesion of “uncertain malignant potential” since the concept of “symplastic leiomyomas” of soft tissue has not been well established.

• Location appears to be the most important prognostic factor for soft tissue leiomyosarcomas with retroperitoneal lesions having a significantly worse prognosis than somatic soft tissue ones.

• There are virtually no histologic factors that are of prognostic importance for retroperitoneal leiomyosarcomas as the majority of lesions have a fatal outcome regardless of appearance or level of mitotic activity. On the other hand age, size, vascular invasion, and grade seem to influence outcome for somatic leiomyosarcomas. “Disruption” of these tumor also appears important but whether it relates to early access to the blood stream or serves as a surrogate marker for size and depth is unclear.

• EBV-associated smooth muscle tumors occur in the setting of immunocompromise and are best regarded as lesions in which the immune status of the patient is more predictive of outcome than traditional histologic parameters.
References:

