United States and Canadian Academy of Pathology

2007 Annual Meeting

Shaken Baby Syndrome (SBS) Ocular Findings with Legal Implications

J. Douglas Cameron, MD
Professor of Ophthalmology
Mayo Clinic School of Medicine
Rochester, Minnesota
Important Prologue

- Injury (disruption of form or function) is influenced by a large number of variables
- No two episodes of injury are exactly alike
- Non-Accidental injuries: Injuries are due to trauma intentionally inflicted by another person
- The diagnosis of non-accidental injury to a child requires input from both clinicians and pathologists
Background Information (SBS)

• Definition
 • Caffey (1946) Whiplash-shaken infant syndrome
 • Lancon (1998) Child abuse
 • Chase (1999) Abusive head injuries
 • Case (2001) Shaken Baby Syndrome
 • Keenan (2002) Inflicted childhood neuro trauma
The purpose of this talk

- Assist pathologists in identifying and reporting ocular findings in cases of suspected non-accidental injury
 - Hemorrhage
 - Retina
 - Sclera
 - Optic nerve
 - Tissue displacement
 - Vitreous
 - Retina
 - Optic nerve
Background Information (SBS) (Continued)

• **Pathophysiology**
 - Not clearly understood
 - Meta studies in progress
 - New studies planned
 - Transfer of kinetic energy
 - Shaking
 - Blunt force trauma
 - The eye-wall (cornea + sclera) is intact
 - Ocular
 - Hemorrhage
 - Tissue displacement
The Result of Pathophysiologic Mechanisms

• Hemorrhage
 • Retina, location (subhyaloid, superficial, full thickness, subretinal)
 • Retina, extent (focal posterior pole, focal peripapillary, confluent, extension to the ora serrata)
• Intrascleral (Circle of Zinn-Haller)
• Optic nerve (subdural, subarachnoid)
The Result of Pathophysiologic Mechanisms (continued)

- Tissue displacement
 - Schisis of the retina (splitting)
 - Retinal detachment (separation from the retinal pigment epithelium)
 - Traction of the dural insertion in the sclera
“Challenges” to the Surgical Pathologist

• Interpreting ophthalmologist’s notations
• Critical anatomy of the eye
• Autolysis and artifacts of the infant eye
• Acquiring the specimen
• Gross Dissection
• Macroscopic Characteristics
• Microscopic characteristics
• The diagnosis
• The Comment
Data from Clinicians
Indirect Ophthalmoscopy

20D Lens
Virtual, inverted, reversed image
• When in doubt; call the ophthalmologist
Optic Disc

"Macula"

"The Posterior Pole"

Superior Temporal Arcade

Ora Serrata

Fovea Centralis

Inferior Temporal Arcade
Interpreting the ophthalmologist’s notations

- **VA** = visual acuity
 - **FF** = fix and follow an object
 - **CF** = count fingers
 - **Pictures** = images of common objects
- **EXT** = external examination
- **SLT** = slit lamp examination
- **PLE** = pen light examination
- **Indirect ophthalmoscopy** = basic tool
Indirect Ophthalmoscopy (IO)

- Most common bedside evaluation
- Viewing an aerial virtual image
- Requires dilation of pupil (mydriacyl, neosynephrine)
- SD: Scleral depression: external pressure to bring the peripheral retina into view
- Clear media = retina clearly visible
- VH = vitreous hemorrhage
- Retinal hemorrhage
Data From Pathologists
Retinal Hemorrhage

• NFL = nerve fiber layer

• Posterior pole: posterior hemisphere of the eye

• Peripapillary: around the optic nerve

• Macular: between the superior and inferior temporal arcade of vessels

• Peripheral: outside of the macula

• To ora: to the most peripheral retina
Essential Anatomy of the Eye
P.O. = Pupil-
Optic Nerve Section
Calottes = caps

Peripheral artifact Lange’s fold

Intraretinal Hemorrhage
Morphology unique to children

- Immature anterior chamber angle
- Flat contour of the lens
- Posterior umbilication of the lens (fixation)
- Delicate, elongated ciliary processes
- Folding of the peripheral retina (Lange’s fold) (fixation)
Epithelial irregularity = post mortem
drying artifact

Immature anterior chamber angle

“Flattened” profile of the crystalline lens
The Immature Eye

Primary Vitreous

Posterior umbilication of the lens;
Fixation artifact

Tunica Vasculosa Lentis

Persistent Hyaloid Vessels
• Under age 3 years
• Identifies the junction of the retina and the ciliary body = Ora Serrata
Retina

- Transparent, cellular
- No extracellular space (necessary for transparency)
- Poorly supported architecture (Mueller cells)
- Regions
- Retinal blood supply
Basic “Systems” of the Retina

Transmission

Computation

Reception

No extracellular space --- Hemorrhage = destruction
Vascular System of the Retina

- Defined vascular channels inner half
- Parallels route of nerve fiber layer
- Dominant superior, inferior temporal arcades
- Avascular periphery
- Capillary-free zone
Blood Supply of the Retina

• Central retinal artery; end artery, no collateral vessels

• Located in the superficial retina, anterior 50% (no vessels in the external retina)

• The central macula is avascular (capillary-free zone)

• Separated from vitreous by the internal limiting membrane

• Density of circulation is proportional to the thickness of the retina
 • Ora = thin
 • Peripapillary = thick
Periphery of the Retina

- **Avascular**
- **Few functional photoreceptors**
- **Nutrition from the choriocapillaris**
- **Microcystoid spaces**
Regions of the Retina

- **Ora serrata**: termination of the peripheral retina
- **Macula (foveola centralis)**; temporal to the optic disc, most sensitive portion of the retina (best visual acuity)
- **Peripapillary**: region around the optic disc, thickest portion of the retina
Vitreous

- Transparent, acellular
- 80% volume of the eye
 - 4 cc
 - 4 grams
- Extracellular materials
 - Type II collagen
 - Hyaluronic acid (proteoglycan)
 - Water
Vitreous

- A scaffolding structure
- Function complete at age 3 years
- Shrinks throughout live
- Origin of “floaters”
Regions of the Vitreous

- Base
- Weiggert’s ligament
- Potential space of Berger
- Adhesions
 - Optic cup
 - Parafovea
 - Blood vessels
 - Lattice degeneration
Vitreous (continued)

- Degenerates after age 3 (floaters)
- Strong attachment: vitreous base at ora
- Relative attachments
 - Peripapillary retina (optic disc)
 - Perimacular retina (near fovea)
 - Along the course of retinal blood vessels
Optic Nerve

- **Meninges**
 - **Dura**: inserts into sclera
 - **Arachnoid**: contiguous with the CNS
 - **Pia**: distributes blood to the optic nerve axons

- **Optic disc blood supply**: Circle of Zinn-Haller

- **Optic nerve blood supply**: arachnoid

- **Retina blood supply**: central retinal artery
Central Retinal Artery and Vein
Short posterior ciliary arteries

- Branches of the ophthalmic artery
- Supply tissues of the optic disc
- End arteries
Cross Section of the Optic Nerve
12 mm posterior to the Sclera
Dura

Arachnoid

Pial septa defining Axonal columns

Route of the Blood Supply
Orbit

- Orbital bones: usually intact
- Orbital soft tissues: usually no hemorrhage or disruption
- Preseptal soft tissues (eyelids) usually no hemorrhage or disruption
Autolysis and Artifacts

- Mechanical disruption or displacement of the lens during sectioning
- Detachment of the retina
- Degeneration of the photoreceptor outer segments
- Mechanical disruption of the neurosensory retina
- Incomplete or off-axial sections
 - Pupil
 - Optic disc
Autolytic Separation of Vireo-retinal Junction

Autolytic Degeneration of Photoreceptor Outer Segments
Retinal Artifacts

- Detachment
 - No subretinal material
 - Amputation of RPE microvilli
 - Sharp contours of retinal separation
Acquiring the Specimen

 - Anterior – more direct
 - Trans frontal – more control (adequate optic nerve)

- **Do not open the eye or penetrate the sclera before immersion fixation**
 - All important diagnostic information is within 2 mm of the external surface of the eye
 - The sclera is not a barrier to the diffusion of formalin
 - Opening the eye before fixation may result in loss of diagnostic information
Gross Dissection

• Protocols
 • Traditional anterior-posterior
 • Pupil
 • Optic nerve
 • Horizontal includes macula
 • Equatorial section
 • Simulates clinical findings
 • Requires secondary sectioning

• Obtain a cross section of the optic nerve

• Photograph positive and negative findings
Macroscopic Characteristics

- Few if any external signs of trauma
- Note “color” of sclera
 - Important finding in osteogenesis imperfecta
 - Indicates relative thickness of sclera
 - Sclera may be thin in premature infants
“Blue”

“White”

Osteogenesis Imperfecta
Macroscopic (continued)

- Retina
 - Retinal hemorrhage
 - Location
 - Extent
 - Peripapillary
 - Confluent
 - Extension to the ora
 - Tissue disturbance
 - Elevation of the macula
 - Retinal detachment
Peripapillary hemorrhage

Ora Serrata

Macular Traction Detachment

Photograph for Files
Macroscopic (continued)

- **Optic nerve**
 - Normal cross sectional diameter of myelinated nerve = 3 mm
 - Preservation of neural axis
 - Subdural hemorrhage
 - Subarachnoid hemorrhage

- **Optic nerve atrophy**
 - Seen with prolonged survival
 - Diminished axonal column
 - Expansion of subdural space
Microscopic Characteristics

- Few if any signs of disruption of the anterior eye
- Cataract, very infrequent
- Retinal hemorrhage
 - Within the retina (intraretinal)
 - Under the retina (subretinal)
 - Internal to the retina (subhyaloid)
- Displacement of the internal limiting membrane
- True retinal detachment
Retina Hemorrhage
Area of macular traction, disruption and hemorrhage
Thick ganglion cell layer
Subretinal hemorrhage = true retinal detachment
Circle of Zinn-Haller

Optic nerve
Axona

Hemorrhage

Sclera
Subarachnoid & Subdural Hemorrhage
The Role of Iron Stains

- The accuracy of intraretinal hemosiderin as an indication of previous injury
- Hemosiderin detected within 2 days in intraretinal hemorrhage caused by central retinal vein occlusion
- Hemosiderin may be associated with organization of extravasated blood
- Absence of hemosiderin does not exclude prior retinal hemorrhage
The Diagnosis

- Eye, right, autopsy specimen: extensive intraretinal and subretinal hemorrhage extending to the ora, focal detachment of the macula, hemorrhage present in the region of Zinn-Haller, extensive subdural and subarachnoid optic nerve hemorrhage (please see comment)

- Eye, left, autopsy specimen: focal intraretinal hemorrhage posterior pole (please see comment)
The Comment

• The findings of the right and left eyes are consistent with non-accidental injury, however, this report should be considered in the overall context of all available historical information, clinical findings, and the remainder of the autopsy findings.

• Other comments
Summary Points (SBS)

1. Input from both clinicians and pathologists is necessary
2. Findings: Hemorrhage, tissue displacement of ocular tissues
3. Report location and extent
4. Obtain a long section of optic nerve
5. Eyes should be fixed before sectioning
6. Hemosiderin staining correlates poorly with time intervals
United States and Canadian Academy of Pathology

2007 Annual Meeting

Shaken Baby Syndrome (SBS) Ocular Findings with Legal Implications

J. Douglas Cameron, MD
Professor of Ophthalmology
Mayo Clinic School of Medicine
Rochester, Minnesota